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ABSTRACT 

Inverse matrix calculation can be considered as an optimization. We have 
demonstrated that this problem can be rapidly solved by highly interconnected 
simple neuron-like analog processors. A network for matrix inversion based on 
the concept of Hopfield's neural network was designed, and implemented with 
electronic hardware. With slight modifications, the network is readily applicable to 
solving a linear simultaneous equation efficiently. Notable features of this circuit 
are potential speed due to parallel processing, and robustness against variations of 
device parameters. 

INTRODUCTION 

Highly interconnected simple analog processors which mmnc a biological 
neural network are known to excel at certain collective computational tasks. For 
example, Hopfield and Tank designed a network to solve the traveling salesman 
problem which is of the np -complete class,l and also designed an AID converter 
of novel architecture2 based on the Hopfield's neural network model?' 4 The net­
work could provide good or optimum solutions during an elapsed time of only a 
few characteristic time constants of the circuit. 

The essence of collective computation is the dissipative dynamics in which ini­
tial voltage configurations of neuron-like analog processors evolve simultaneously 
and rapidly to steady states that may be interpreted as optimal solutions. Hopfield 
has constructed the computational energy E (Liapunov function), and has shown 
that the energy function E of his network decreases in time when coupling coeffi­
cients are symmetric. At the steady state E becomes one of local minima. 

In this paper we consider the matrix inversion as an optimization problem, 
and apply the concept of the Hopfield neural network model to this problem. 

CONSTRUCTION OF THE ENERGY FUNCTIONS 

Consider a matrix equation AV=I, where A is an input n Xn matrix, V is 
the unknown inverse matrix, and I is the identity matrix. Following Hopfield we 
define n energy functions E Ie' k = 1, 2, ... , n, 

n n n 

E 1 = (1I2)[(~ A 1j Vj1 -1)2 + (~A2) Vj1 )2 + ... + (~Anj Vj1)2] 

)-1 j-1 
n n 

E2 = (1/2)[(~A1)V)2l + (~A2)V)2-1)2 + 
)=1 )=1 
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n n n 

En = (1/2)[(~ A1J VJn)2 + (~A2J Vjn )2 + ... + (~An) VJn _1)2] (1) 
j=l }=1 J-1 

where AiJ and ViL.are the elements of ith row and jth column of matrix A and 
V, respectively. when A is a nonsingular matrix, the minimum value (=zero) of 
each energy function is unique and is located at a point in the corresponding 
hyperspace whose coordinates are { V u:, V 2k ' "', V nk }, k = 1, 2, "', n. At 
this minimum value of each energy function the values of V 11' V 12' ... , Vnn 
become the elements of the inverse matrix A -1. When A is a singular matrix the 
minimum value (in general, not zero) of each energy function is not unique and is 
located on a contour line of the minimum value. Thus, if we construct a model 
network in which initial voltage configurations of simple analog processors, called 
neurons, converge simultaneously and rapidly to the minimum energy point, we can 
say the network have found the optimum solution of matrix inversion problem. 
The optimum solution means that when A is a nonsingular matrix the result is the 
inverse matrix that we want to know, and when A is a singular matrix the result 
is a solution that is optimal in a least-square sense of Eq. (1). 

DESIGN OF THE NETWORK AND THE HOPFIELD MODEL 

Designing the network for matrix inversion, we use the Hopfield model 
without inherent loss terms, that is, 

--= 
dt 

a 
---Ek(V 11' V 2k' ... , Vnk ) 

aVik 

i,k=1,2, ... ,n (2) 

where uik is the input voltage of ith neuron in the kth network, Vik is its output, 
and the function gik is the input-output relationship. But the neurons of this 
scheme operate in all the regions of gik differently from Hopfield's nonlinear 2-
state neurons of associative memory models.3• 4 

From Eq. (1) and Eq. (2), we can define coupling coefficients Tij between 
ith and jth neurons and rewrite Eq. (2) as 

--= 
dt 

n 

- ~ TiJ V)k + Aki , 
j=l 

n 

TiJ = ~ AliAIJ = Tji ' 
1=1 

(3) 

It may be noted that Ti · is independent of k and only one set of hardware is 
needed for all k. The implemented network is shown in Fig. 1. The same set of 

n 

hardware with bias levels, ~ A Ji h), can be used to solve a linear simultaneous 
)=1 
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equation represented by Ax=b for a given vector b. 

INPUT 

OUTPUT 

Fig. 1. Implemented network for matrix inversion with externally 
controllable coupling coefficients. Nonlinearity between 
the input and the output of neurons is assumed to be 
distributed in the adder and the integrator. 

The application of the gradient Hopfield model to this problem gives the result 
that is similar to the steepest descent method.s But the nonlinearity between the 
input and the output of neurons is introduced. Its effect to the computational 
capability will be considered next. 

CHARACTERISTICS OF THE NETWORK 

For a simple case of 3 x3 input matrices the network is implemented with 
electronic hardware and its dynamic behavior is simulated by integration of the 
Eq. (3). For nonsingular input matrices, exact realization of Tij connection and 
bias Ali is an important factor for calculation accuracy, but the initial condition 
and other device parameters such as steepness, shape and uniformity of gil are 
not. Even a complex gik function shown in Fig. 2 can not affect the computa­
tional capability. Convergence time of the output state is determined by the 
characteristic time constant of the circuit. An example of experimental results is 
shown in Fig. 3. For singular input matrices, the converged output voltage confi­
guration of the network is dependent upon the initial state and the shape of gil' 
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Fig. 2. gile functions used in computer simulations where 
Aile is the steepness of sigmoid function tanh (Aile uile)' 
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Fig. 3. An example of experimental results 
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COMPLEXITY ANALYSIS 

By counting operations we compare the neural net approach with other well­
known methods such as Triangular-decomposition and Gauss-Jordan elimination.6 

(1) Triangular-decomposition or Gauss-Jordan elimination method takes 0 (8n 3/3) 
multiqlications/divisions and additions for large n Xn matrix inversion, and 
o (2n /3) multiplications/divisions and additions for solving the linear simultaneous 
equation Ax=b. 
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(2) The neural net approach takes the number of operations required to calculate 
Tij (nothing but matrix-matrix multiplication), that is, 0 (n 3/2) multiplications and 
additions for both matrix inversion and solving the linear simultaneous equation. 
And the time required for output stablization is about a few times the charac­
teristic time constant of the network. The calculation of coupling coefficients can 
be directly executed without multiple iterations by a specially designed optical 
matrix-matrix multiplier,' while the calculation of bias values in solving a linear 
simultaneous equation can be done by an optical vector-matrix multiplier.8 Thus, 
this approach has a definite advantage in potential calculation speed due to global 
interconnection of simple parallel analog processors, though its calculation accu­
racy may be limited by the nature of analog computation. A large number of 
controllable Tij interconnections may be easily realized with optoelectronic dev­
ices.9 

CONCLUSIONS 

We have designed and implemented a matrix inversion network based on the 
concept of the Hopfield's neural network model. 1bis network is composed of 
highly interconnected simple neuron-like analog processors which process the infor­
mation in parallel. The effect of sigmoid or complex nonlinearities on the compu­
tational capability is unimportant in this problem. Steep sigmoid functions reduce 
only the convergence time of the network. When a nonsingular matrix is given as 
an input, the network converges spontaneously and rapidly to the correct inverse 
matrix regardless of initial conditions. When a singular matrix is given as an 
input, the network gives a stable optimum solution that depends upon initial con­
ditions of the network. 
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