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ABSTRACT 

A lightness algorithm that separates surface reflectance from illumination in a 
Mondrian world is synthesized automatically from a set of examples, pairs of input 
(image irradiance) and desired output (surface reflectance). The algorithm, which re­
sembles a new lightness algorithm recently proposed by Land, is approximately equiva­
lent to filtering the image through a center-surround receptive field in individual chro­
matic channels. The synthesizing technique, optimal linear estimation, requires only 
one assumption, that the operator that transforms input into output is linear. This 
assumption is true for a certain class of early vision algorithms that may therefore be 
synthesized in a similar way from examples. Other methods of synthesizing algorithms 
from examples, or "learning", such as backpropagation, do not yield a significantly dif­
ferent or better lightness algorithm in the Mondrian world. The linear estimation and 
backpropagation techniques both produce simultaneous brightness contrast effects. 

The problems that a visual system must solve in decoding two-dimensional images 
into three-dimensional scenes (inverse optics problems) are difficult: the information 
supplied by an image is not sufficient by itself to specify a unique scene. To reduce 
the number of possible interpretations of images, visual systems, whether artificial 
or biological, must make use of natural constraints, assumptions about the physical 
properties of surfaces and lights. Computational vision scientists have derived effective 
solutions for some inverse optics problems (such as computing depth from binocular 
disparity) by determining the appropriate natural constraints and embedding them in 
algorithms. How might a visual system discover and exploit natural constraints on its 
own? We address a simpler question: Given only a set of examples of input images and 
desired output solutions, can a visual system synthesize. or "learn", the algorithm that 
converts input to output? We find that an algorithm for computing color in a restricted 
world can be constructed from examples using standard techniques of optimal linear 
estimation. 

The computation of color is a prime example of the difficult problems of inverse 
optics. We do not merely discriminate betwN'n different wavelengths of light; we assign 
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roughly constant colors to objects even though the light signals they send to our eyes 
change as the illumination varies across space and chromatic spectrum. The compu­
tational goal underlying color constancy seems to be to extract the invariant surface 
spectral reflectance properties from the image irradiance, in which reflectance and iI-" 
lumination are mixed 1 • 

Lightness algorithms 2-8, pioneered by Land, assume that the color of an object 
can be specified by its lightness, or relative surface reflectance, in each of three inde­
pendent chromatic channels, and that lightness is computed in the same way in each 
channel. Computing color is thereby reduced to extracting surface reflectance from the 
image irradiance in a single chromatic channel. 

The image irra.diance, s', is proportional to the product of the illumination inten­
sity e' and the surface reflectance r' in that channel: 

s' (x, y) = r' (x, y )e' (x, y). (1 ) 

This form of the image intensity equation is true for a Lambertian reflectance model, 
in which the irradiance s' has no specular components, and for appropriately chosen 
color channels 9. Taking the logarithm of both sides converts it to a sum: 

s(x, y) = rex, y) + e(x,y), 

where s = loges'), r = log(r') and e = log(e'). 

(2) 

Given s(x,y) alone, the problem of solving Eq. 2 for r(x,y) is underconstrained. 
Lightness algorithms constrain the problem by restricting their domain to a world of 
Mondrians, two-dimensional surfaces covered with patches of random colors2 and by 
exploiting two constraints in that world: (i) r'(x,y) is unifonn within patches but 
has sharp discontinuities at edges between patches and (ii) e' (x, y) varies smoothly 
across the Mondrian. Under these constraints, lightness algorithms can recover a good 
approximation to r( x, y) and so can recover lightness triplets that label roughly constant 
colors 10. 

We ask whether it is possible to synthesize from examples an algorithm that ex· 
tracts reflectance from image irradiance. and whether the synthesized algorithm will re­
semble existing lightness algorithms derived from an explicit analysis of the constraints. 
We make one assumption, that the operator that transforms irradiance into reflectance 
is linear. Under that assumption, motivated by considerations discussed later, we use 
optimal linear estimation techniques to synthesize an operator from examples. The 
examples are pairs of images: an input image of a Mondrian under illumination that 
varies smoothly across space and its desired output image that displays the reflectance 
of the Mondrian without the illumination. The technique finds the linear estimator 
that best maps input into desired output. in the least squares sense. 

For computational convenience we use one-dimensional "training vectors" that 
represent vertical scan lines across the ~londrian images (Fig. 1). We generate many 
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Fig. 1. (a) The input data, a one-dimensional vector 320 pixels long. Its random 
Mondrian reflectance pattern is superimposed on a linear illumination gradient with 
a random slope and offset. (b) shows the corresponding output solution, on the left 
the illumination and on the right reBectance. We used 1500 such pairs of input­
output examples (each different from the others) to train the operator shown in Fig. 
2. (c) shows the result obtained by the estimated operator when it acts on the input 
data (a), not part of the training set. On the left is the illumination and on the 
right the reflectance, to be compared with (b). This result is fairly typical: in some 
cases the prediction is even better, in others it is worse. 

c 

different input vectors s by adding together different random T and e vectors, according 
to Eq. 2. Each vector r represents a pattern of step changes across space, corresponding 
to one column of a reHectance image. The step changes occur at random pixels and 
are of random amplitude between set minimum and maximum values. Each vector t 

represents a smooth gradient across space with a random offset and slope, correspondin~ 
to one column of an illumination image. We th~n arrange the training vectors sand r 
as the columns of two matrices Sand R, resp~ti· .. ely. Our goal is then to compute the 

optimal solution L of 

LS = R 

where L is a linear operator represented as a matrix. 
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It is well known that the solution of this equation that is optimal in the least 
squares sense is 

( 4) 

where S+ is the Moore-Penrose pseudoinverse 11. We compute the pseudoinverse by 
overconstraining the problem - using many more training vectors than there are number 
of pixels in each vector - and using the straightforward formula that applies in the 
overconstrained case 12: S+ = ST(SST)-l. 

The operator L computed in this way recovers a good approximation to the correct 
output vector r when given a new s, not part of the training set, as input (Fig. Ic). 
A second operator, estimated in the same way, recovers the illumination e. Acting on 
a random two-dimensional Mondrian L also yields a satisfactory approximation to the 
correct output image. 

Our estimation scheme successfully synthesizes an algorithm that performs the 
lightness computation in a Mondrian world. What is the algorithm and what is its 
relationship to other lightness algorithms? To answer these questions we examine the 
structure of the matrix L. We assume that, although the operator is not a convolution 
operator, it should approximate one far from the boundaries of the image. That is, 
in its central part, the operator should be space-invariant, performing the same action 
on each point in the image. Each row in the central part of L should therefore be 
the same as the row above but displaced by one element to the right. Inspection of 
the matrix confirmes this expectation. To find the form of L in its center, we thus 
average the rows there, first shifting them appropriately. The result, shown in Fig. 2, 
is a space-invariant filter with a narrow positive peak and a broad, shallow, negative 
surround. 

Interestingly, the filter our scheme synthesizes is very similar to Land's most recent 
retinex operator 5, which divides the image irradiance at each pixel by a weighted 
average of the irradiance at all pixels in a large surround and takes the logarithm of 
that result to yield lightness 13. The lightness triplets computed by the retinex operator 
agree well with human perception in a Mondrian world. The retinex operator and our 
matrix L both differ from Land's earlier retinex algorithms, which require a non-linear 
thresholding step to eliminate smooth gradients of illumination. 

The shape of the filter in Fig. 2, particularly of its large surround, is also sugges­
tive of the "nonclassical" receptive fields that have been found in V 4, a cortical area 
implicated in mechanisms underlying color constancy 14-17. 

The form of the space-invariant filter is similar to that derived in our earlier formal 
analysis of the lightness problem 8. It is qualitatively the same as that which results 
from the direct application of regularization methods exploiting the spatial constraints 
on reflectance and illumination described above 9.18.19. The Fourier transform of the 
filter of Fig. 2 is approximately a bandpass filter that cuts out low frequencies due 
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Fig. 2. The space-invariant part of the estimated operator, obtained by shifting and 
averaging the rows of a 160-pixel-wide central square of the matrix L, trained on a set 
of 1500 examples with linear illumination gradients (see Fig. 1). When logarithmic 
illumination gradients are used , a qualitatively similar receptive field is obtained. In 
a separate experiment we use a training set of one-dimensional Mondrians with either 
linear illumination gradients or slowly varying sinusoidal illumination components 
with random wavelength, phase and amplitude. T he resulting filter is shown in 
the inset. The surrounds of both filters extend beyond the range we can estimate 
reliably, the range we show here. 

to slow gradients of illumination and preserves intennediate frequencies due to step 
changes in reflectance. In contrast, the operator that recovers the illumination, e. 
takes the form of a low-pass filter. \Ve stress that the entire operator L is not a 
space-invariant filter. 

In this context, it is clear that the shape of the estimated operator should vary with 
the type of illumination gradient in the training set. We synthesize a second operator 
using a new set of examples that contain equal numbers of vectors with random, sinu­
soidally varying illumination components and VE"(tors with random, linear illumination 
gradients. Whereas the first operator, synthE.>Sized from examples with strictly linear 

illumination gradients, has a broad negative surround that remains virtually constant 
throughout its extent, the new operator's surround (Fig. 2, inset) has a smaller ext(,111 
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and decays smoothly towards zero from its peak negative value in its center. 
We also apply the operator in Fig. 2 to new input vectors in which the density 

and amplitude of the step changes of reflectance differ greatly from those on which the 
operator is trained. The operator performs well, for example, on an input vector rep­
resenting one column of an image of a small patch of one reflectance against a uniform 
background of a different reflectance, the entire image under a linear illumination gra­
dient. This result is consistent with psychophysical experiments that show that color 
constancy of a patch holds when its Mondrian background is replaced by an equivalent 
grey background 20. 

The operator also produces simultaneous brightness contrast, as expected from the 
shape and sign of its surround. The output reflectance it computes for a patch of fixed 
input reflectance decreases linearly with increasing average irradiance of the input test 
vector in which the patch appears. Similarly, to us, a dark patch appears darker when 
against a light background than against a dark one. 

This result takes one step towards explaining such illusions as the Koffka Ring 21. 

A uniform gray annulus against a bipartite background (Fig. 3a) appears to split into 
two halves of different lightnesses when the midline between the light and dark halves 
of the background is drawn across the annulus (Fig. 3b). The estimated operator 
acting on the Koffka Ring of Fig. 3b reproduces our perception by assigning a lower 
output reflectance to the left half of the annulus (which appears darker to us) than to 
the right half 22. Yet the operator gives this brightness contrast effect whether or not 
the midline is drawn across the annulus (Fig. 3c). Becau~e the opf'rator can perform 
only a linear transformation between the input and output images, it is not surprising 
that the addition of the midline in the input evokes so little change in the output. 
These results demonstrate that the linear operator alone cannot compute lightness in 
all worlds and suggest that an additional operator might be necessary to mark and 
guide it within bounded regions. 

Our estimation procedure is motivated by our previous observation 9.23,18 that 
standard regularization algorithms 19 in early vision define linear mappings between 
input and output and therefore can be estimated associatively under certain condi· 
tions. The technique of optimal linear estimation that we use is closely related to 
optimal Bayesian estimation 9. If we were to assume from the start that the optimal 
linear operator is space-invariant, we could considerably simplify (and streamline) the 
computation by using standard correlation te<:hniques 9.24. 

How does our estimation technique compare with other methods of "learning" a 
lightness algorithm? We can compute the r~ularized pseudoinverse using gradient 
descent on a "neural" network 25 with linf'ar units. Since the pseudoinverse is lhf" 
unique best linear approximation in the L1 norm. a gradient descent method that 
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minimizes the square error between the actual output and desired output of a fully 
connected linear network is guaranteed to converge, albeit slowly. Thus gradient de­
scent in weight space converges to the same result as our first technique, the global 
minimum. 
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Fig. 3. (a) Koffka Ring. (b) Koftka Ring with 
midline drawn across annulus. (c) Horizontal 
scan lines across Koffka Ring. Top: Scan 
line starting at arrow in (b). Middle: Scan 
line at corresponding location in the output of 
linear operator acting on (b). Bottom: Scan line 
at same location in the output of operator acting 
on (a). 
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We also compare the linear estimation technique with a "backpropagation" net­
work: gradient descent on a 2-layer network with sigmoid units 25 (32 inputs, 32 
"hidden units", and 32 linear outputs), using training vectors 32 pixels long. The net­
work requires an order of magnitude more time to converge to a stable configuration 
than does the linear estimator for the same set of 32-pixel examples. The network's 
performance is slightly, yet consistently, better, measured as the root-mean-square er­
ror in output, averaged over sets of at least 2000 new input vectors. Interestingly, the 
backpropagation network and the linear estimator err in the same way on the same 
input vectors. It is possible that the backpropagation network may show considerable 
inprovement over the linear estimator in a world more complex than the Mondrian one. 
We are presently examining its performance on images with real-world features such 
as shading, shadows, and highlights26. 

We do not think that our results mean that color constancy may be learned during 
a critical period by biological organisms. It seems more reasonable to consider them 
simply as a demonstration on a toy world that in the course of evolution a visual system 
may recover and exploit natural constraints hidden in the physics of the world. The 
significance of our results lies in the facts that a simple statistical technique may be used 
to synthesize a lightness algorithm from examples; that the technique does as well as 
other techniques such as backpropagation; and that a similar technique may be used for 
other problems in early vision. Furthermore, the synthesized operator resembles both 
Land's psychophysically-tested retinex operator and a neuronal nonclassical receptive 
field. The operator's properties suggest that simultaneous color (or brightness) contrast 
might be the result of the visual system's attempt to discount illumination gradients 
27 
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