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A synthetic neural network simulation of cerebral neocortex was 
developed based on detailed anatomy and physiology. Processing elements 
possess temporal nonlinearities and connection patterns similar to those of 
cortical neurons. The network was able to replicate spatial and temporal 
integration properties found experimentally in neocortex. A certain level of 
randomness was found to be crucial for the robustness of at least some of 
the network's computational capabilities. Emphasis was placed on how 
synthetic simulations can be of use to the study of both artificial and 
biological neural networks. 

A variety of fields have benefited from the use of computer simulations. This is 

true in spite of the fact that general theories and conceptual models are lacking in many 

fields and contrasts with the use of simulations to explore existing theoretical structures that 

are extremely complex (cf. MacGregor and Lewis, 1977). When theoretical 

superstructures are missing, simulations can be used to synthesize empirical findings into a 

system which can then be studied analytically in and of itself. The vast compendium of 

neuroanatomical and neurophysiological data that has been collected and the concomitant 

absence of theories of brain function (Crick, 1979; Lewin, 1982) makes neuroscience an 

ideal candidate for the application of synthetic simulations. Furthennore, in keeping with 

the spirit of this meeting, neural network simulations which synthesize biological data can 

make contributions to the study of artificial neural systems as general infonnation 

processing machines as well as to the study of the brain. A synthetic simulation of cerebral 

neocortex is presented here and is intended to be an example of how traffic might flow on 

the two-way street which this conference is trying to build between artificial neural network 

modelers and neuroscientists. 

The fact that cerebral neocortex is involved in some of the highest fonns of 

information processing and the fact that a wide variety of neurophysiological and 

neuroanatomical data are amenable to simulation motivated the present development of a 

synthetic simulation of neocortex. The simulation itself is comparatively simple; 

nevertheless it is more realistic in tenns of its structure and elemental processing units than 

most artificial neural networks. 

The neurons from which our simulation is constructed go beyond the simple 

sigmoid or hard-saturation nonlinearities of most artificial neural systems. For example, 
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because inputs to actual neurons are mediated by ion currents whose driving force depends 

on the membrane potential of the neuron. the amplitude of a cell's response to an input. i.e. 

the amplitude of the post-synaptic potential (PSP). depends not only on the strength of the 

synapse at which the input arrives. but also on the state of the neuron at the time of the 

input's arrival. This aspect of classical neuron electrophysiology has been implemented in 

our simulation (figure lA). and leads to another important nonlinearity of neurons: 

namely. current shunting. Primarily effective as shunting inhibition. excitatory current can 

be shunted out an inhibitory synapse so that the sum of an inhibitory postsynaptic potential 

and an excitatory postsynaptic potential of equal amplitude does not result in mutual 

cancellation. Instead. interactions between the ion reversal potentials. conductance values. 

relative timing of inputs. and spatial locations of synapses determine the amplitude of the 

response in a nonlinear fashion (figure IB) (see Koch. Poggio. and Torre. 1983 for a 

quantitative analysis). These properties of actual neurons have been ignored by most 

artificial neural network designers. though detailed knowledge of them has existed for 

decades and in spite of the fact that they can be used to implement complex computations 

(e.g. Torre and Poggio. 1978; Houchin. 1975). 

The development of action potentials and spatial interactions within the model 

neurons have been simplified in our simulation. Action potentials involve preprogrammed 
\ 

fluctuations in the membrane potential of our neurons and result in an absolute and a 

relative refractory period. Thus. during the time a cell is firing a spike synaptic inputs are 

ignored. and immediately following an action potential the neuron is hyperpolarized. The 

modeling of spatial interactions is also limited since neurons are modeled primarily as 

spheres. Though the spheres can be deformed through control of a synaptic weight which 

modulates the amplitudes of ion conductances. detailed dendritic interactions are not 

simulated. Nonetheless. the fact that inhibition is generally closer to a cortical neuron's 

soma while excitation is more distal in a cell's dendritic tree is simulated through the use of 

stronger inhibitory synapses and relatively weaker excitatory synapses. 

The relative strengths of synapses in a neural network define its connectivity. 

Though initial connectivity is random in many artificial networks. brains can be thought to 

contain a combination of randomness and fixed structure at distinct levels (Szentagothai. 

1978). From a macroscopic perspective. all of cerebral neocortex might be structured in a 

modular fashion analogous to the way the barrel field of mouse somatosensory cortex is 

structured (Woolsey and Van der Loos. 1970). Though speculative, arguments for the 

existence of some sort of anatomical modularity over the entire cortex are gaining ground 
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(Mountcastle, 1978; Szentagothai, 1979; Shepherd, in press). Thus, inspired by the 

barrels of mice and by growing interest in functional units of 50 to 100 microns with on the 

order of 1000 neurons, our simulation is built up of five modules (60 cells each) with more 

dense local interconnections and fewer intermodular contacts. Furthermore, a wide variety 

of neuronal classification schemes have led us to subdivide the gross structure of each 

module so as to contain four classes of neurons: cortico-cortical pyramids, output 

pyramids, spiny stellate or local excitatory cells, and GABAergic or inhibirtory cells. 

At this level of analysis, the impressed structure allows for control over a variety of 

pathways. In our simulation each class of neurons within a module is connected to every 

other class and intermodular connections are provided along pathways from corti co-cortical 

pyramids to inhibitory cells, output pyramids, and cortico-cortical pyramids in immediately 

adjacent modules. A general sense of how strong a pathway is can be inferred from the 

product of the number of synapses a neuron receives from a particular class and the 

strength of each of those synapses. The broad architecture of the simulation is further 

structured to emphasize a three step path: Inputs to the network impact most strongly on 

the spiny stellate cells of the module receiving the input; these cells in tum project to 

cortico-cortical pyramidal cells more strongly than they do to other cell types; and finally, 

the pathway from the cortico-cortical pyramids to the output pyramidal cells of the same 

module is also particularly strong. This general architecture (figure 2) has received 

empirical support in many regions of cortex (Jones, 1986). 

In distinction to this synaptic architecture, a fine-grain connectivity is defined in our 

simulated network as well. At a more microscopic level, connectivity in the network is 

random. Thus, within the confines of the architecture described above, the determination 

of which neuron of a particular class is connected to which other cell in a target class is 

done at random. Two distinct levels of connectivity have, therefore, been established 

(figure 3). Together they provide a middle ground between the completely arbitrary 

connectivity of many artificial neural networks and the problem specific connectivities of 

other artificial systems. This distinction between gross synaptic architecture and fine-grain 

connectivity also has intuitive appeal for theories of brain development and, as we shall 

see, has non-trivial effects on the computational capabilities of the network as a whole. 

With defintions for input integration within the local processors, that is within the 

neurons, and with the establishment of connectivity patterns, the network is complete and 

ready to perform as a computational unit. In order to judge the simulation's capabilities in 

some rough way, a qualitative analysis of its response to an input will suffice. Figure 4 
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shows the response of the network to an input composed of a small burst of action 

potentials arriving at a single module. The data is displayed as a raster in which time is 

mapped along the abscissa and all the cells of the network are arranged by module and cell 

class along the ordinate. Each marker on the graph represents a single action potential fIred 

by the appropriate neuron at the indicated time. Qualitatively, what is of importance is the 

fact that the network does not remain unresponsive, saturate with activity in all neurons, or 

oscillate in any way. Of course, that the network behave this way was predetermined by 

the combination of the properties of the neurons with a judicious selection of synaptic 

weights and path strengths. The properties of the neurons were fixed from physiological 

data, and once a synaptic architecture was found which produced the results in figure 4, 

that too was fixed. A more detailed analysis of the temporal firing pattern and of the 

distribution of activity over the different cell classes might reveal important network 

properties and the relative importance of various pathways to the overall function. Such an 

analysis of the sensitivity of the network to different path strengths and even to intracellular 

parameters will, however, have to be postponed. Suffice it to say at this point that the 

network, as structured, has some nonzero, finite, non-oscillatory response which, 

qualitatively, might not offend a physiologist judging cortical activity. 

Though the synaptic architecture was tailored manually and fixed so as to produce 

"reasonable" results, the fine-grain connectivity, i.e. the determination of exactly which 

cell in a class connects to which other cell, was random. An important property of artificial 

(and presumably biological) neural networks can be uncovered by exploiting the distinction 

between levels of connectivity described above. Before doing so, however, a detail of 

neural network design must be made explicit. Any network, either artificial or biological, 

must contend with the time it takes to communicate among the processing elements. In the 

brain, the time it takes for an action potential to travel from one neuron to another depends 

on the conduction velocity of the axon down which the spike is traveling and on the delay 

that occurs at the synapse connecting the cells. Roughly, the total transmission time from 

one cortical neuron to another lies between 1 and 5 milliseconds. In our simulation two 
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paradigms were used. In one case, the transmission times between all neurons were 

standardized at 1 msec.* Alternatively, the transmission times were fixed at random, 

though admittedly unphysiological, values between 0.1 and 2 msec. 

Now, if the time it takes for an action potential to travel from one neuron to another 

were fixed for all cells at 1 msec, different fine-grain connectivity patterns are found to 

produce entirely distinct network responses to the same input, in spite of the fact that the 

gross synaptic architecture remained constant. This was true no matter what particular 

synaptic architecture was used. If, on the other hand, one changes the transmission times 

so that they vary randomly between 0.1 and 2 msec, it becomes easy to find sets of 

synaptic strengths that were robust with respect to changes in the fine-grain connectivity. 

Thus, a wide search of path strengths failed to produce a network which was robust to 

changes in fine-grain connectivity in the case of identical transmission times, while a set of 

synaptic weights that produced robust responses was easy to find when the transmission 

times were randomized. Figure 5 summarizes this result. In the figure overall network 

activity is measured simply as the total number of action potentials generated by pyramidal 

cells during an experiment and robustness can be judged as the relative stability of this 

response. The abscissa plots distinct experiments using the same synaptic architecture with 

different fine-grain connectivity patterns. Thus, though the synaptic architecture remains 

constant, the different trials represent changes in which particular cell is connected to which 

other cell. The results show quite dramatically that the network in which the transmission 

times are randomly distributed is more robust with respect to changes in fine-grain 

connectivity than the network in which the transmission times are all 1 msec. 

It is important to note that in either case, both when the network was robust and 

when changes of fine-grain connectivity produced gross changes in network output, the 

synaptic architectures produced outputs like that in figure 4 with some fine-grain 

connectivities. If the response of the network to an input can be considered the result of 

* Because neurons receive varying amounts of input and because integration is performed 

by summating excitatory and inhibitory postsynaptic potentials in a nonlinear way, the time 

each neuron needs to summate its inputs and produce an action potential varies from neuron 

to neuron and from time to time. This then allows for asynchronous fuing in spite of the 

identical transmission times. 
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some computation, figure 5 reveals that the same computational capability is not robust 

with respect to changes in fine-grain connectivity when transmission times between 

neurons are all 1 msec, but is more robust when these times are randomized. Thus, a 

single computational capability, viz. a response like that in figure 4 to a single input, was 

found to exist in networks with different synaptic architectures and different transmission 

time paradigms; this computational capability, however, varied in terms of its robustness 

with respect to changes in fine-grain connectivity when present in either of the transmission 

time paradigms. 

A more complex computational capability emerged from the neural network 

simulation we have developed and described. If we label two neighboring modules C2 and 

C3, an input to C2 will suppress the response of C3 to a second input at C3 if the second 

input is delayed. A convenient way of representing this spatio-temporal integration 

property is given in figure 6. The ordinate plots the ratio of the normal response of one 

module (say C3) to the response of the module to the same input when an input to a 

neighboring module (say C2) preceeds the input to the original module (C3). Thus, a value 

of one on the ordinate means the earlier spatially distinct input had no effect on the response 

of the module in which this property is being measured. A value less than one represents 

suppression, while values greater than one represent enhancement. On the abscissa, the 

interstimulus interval is plotted. From figure 6, it can be seen that significant suppression 

of the pyramidal cell output, mostly of the output pyramidal cell output, occurs when the 

inputs are separated by 10 to 30 msec. This response can be characterized as a sort of 

dynamic lateral inhibition since an input is suppressing the ability of a neighboring region 

to respond when the input pairs have a particular time course. This property could playa 

variety of role in biological and artificial neural networks. One role for this spatio-temporal 

integration property, for example, might be in detecting the velocity of a moving stimulus. 

The emergent spatio-temporal property of the network just described was not 

explicitly built into the network. Moreover, no set of synaptic weights was able to give rise 

to this computational capability when transmission times were all set to 1 msec. Thus, in 

addition to providing robustness, the random transmission times also enabled a more 

complex property to emerge. The important factor in the appearances of both the 

robustness and the dynamic lateral inhibition was randomization; though it was 

implemented as randomly varying transmission times, random spontaneous activity would 

have played the same role. From the viewpoint, then, of the engineer designing artificial 

neural networks, the neural network presented here has instructional value in spite of the 
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fact that it was designed to synthesize biological data. Specifically, it motivates the 

consideration of randomness as a design constraint. 

From the prespective of the biologists attending this meeting, a simple fact will 

reveal the importance of synthetic simulations. The dynamic lateral inhibition presented in 

figure 6 is known to exist in rat somatosensory cortex (Simons, 1985). By deflecting the 

whiskers on a rat's face, Simons was able to stimulate individual barrels of the postero­

medial somatosensory barrel field in combinations which revealed similar spatio-temporal 

interactions among the responses of the cortical neurons of the barrel field. The temporal 

suppression he reported even has a time course similar to that of the simulation. What the 

experiment did not reveal, however, was the class of cell in which suppression was seen; 

the simulation located most of the suppression in the output pyramidal cells. Hence, for a 

biologist, even a simple synthetic simulation like the one presented here can make defmitive 

predictions. What differentiates the predictions made by synthetic simulations from those 

of more general artificial neural systems, of course, is that the strong biological foundations 

of synthetic simulations provide an easily grasped and highly relevant framework for both 

predictions and experimental verification. 

One of the advertised purposes of this meeting was to "bring together 

neurobiologists, cognitive psychologists, engineers, and physicists with common interest 

in natural and artificial neural networks." Towards that end, synthetic computer 

simulations, i.e. simulations which follow known neurophysiological and neuroanatomical 

data as if they comprised a complex recipe, can provide an experimental medium which is 

useful for both biologists and engineers. The simulation of cerebral neocortex developed 

here has information regarding the role of randomness in the the robustness and presence 

of various computational capabilities as well as information regarding the value of distinct 

levels of connectivity to contribute to the design of artificial neural networks. At the same 

time, the synthetic nature of the network provides the biologist with an environment in 

which he can test notions of actual neural function as well as with a system which replicates 

known properties of biological systems and makes explicit predictions. Providing two­

way interactions, synthetic simulations like this one will allow future generations of 

artificial neural networks to benefit from the empirical findings of biologists, while the 

slowly evolving theories of brain function benefit from the more generalizable results and 

methods of engineers. 
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Figure IA: Intracellular records of post-synaptic potentials resulting from single excitatory and 
inhibitory inputs to cells at different resting potentials. 
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Figure IB: Illustration of the current shunting nonlinearity present in the model neurons. Though 
the simultaneous arrival of postsynaptic potentials of equal and opposite amplitude would result 
in no deflection in the membrane potential of a simple linear neuron model, a variety of factors 
contribute to the nonlinear response of actual neurons and of the neurons modeled in the present 
simulation. 
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Figure 2: A schematic representation of the simulated cortical network. Five modules are used, each containing sixty neurons. Neurons are 
divided into four classes. Numerals within the caricatured neurons represent the number of cells in that particular class that are simulated. 
Though all cell classes are connected to all other classes, the pathway from input to spiny stellate to cortico-cortical pyramids to output 
pyramids is particularly strong. 
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Figure 3: Two levels of connectivity are defined in the network. Gross synaptic architecture is 
defined among classes of cells. Fine-grain connectivity specifies which cell connects to which 
other cell and is determined at random. 
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Figure 4: Sample response of the entire network to a small burst of action potentials delivered to 
module 3. 
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Robustness With Respect to Connectivity Pattern 
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Figure 5: Plot of an arbitrary activity measure (total spike activity in all pyramidal cells) versus 
various instatiations ofthe same connectional architecture. Along the abscissa are represented the 
different fine-grained patterns of connectivity within a fixed connectional architecture. In one 
case the conductance times between all cells was I msec and in the other case the times were 
selected at random from values between 0.1 msec and 2 msec. This experiment shows the greater 
overall stability produced by random conduction times. 
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