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ABSTRACT 

The efficient realization, using current silicon technology, of Very Large Connection 
Networks (VLCN) with more than a billion connections requires that these networks exhibit 
a high degree of communication locality. Real neural networks exhibit significant locality, 
yet most connectionist/neural network models have little. In this paper, the connectivity 
requirements of a simple associative network are analyzed using communication theory. 
Several techniques based on communication theory are presented that improve the robust­
ness of the network in the face of sparse, local interconnect structures. Also discussed are 
some potential problems when information is distributed too widely. 

INTRODUCTION 

Connectionist/neural network researchers are learning to program networks that exhi­
bit a broad range of cognitive behavior. Unfortunately, existing computer systems are lim­
ited in their ability to emulate such networks efficiently. The cost of emulating a network, 
whether with special purpose, highly parallel, silicon-based architectures, or with traditional 
parallel architectures, is directly proportional to the number of connections in the network. 
This number tends to increase geometrically as the number of nodes increases. Even with 
large, massively parallel architectures, connections take time and silicon area. Many exist­
ing neural network models scale poorly in learning time and connections, precluding large 
implementations. 

The connectivity 'costs of a network are directly related to its locality. A network 
exhibits locality 01 communication 1 if most of its processing elements connect to other physi­
cally adjacent processing elements in any reasonable mapping of the elements onto a planar 
surface. There is much evidence that real neural networks exhibit locality2. In this paper, 
a technique is presented for analyzing the effects of locality on the process of association. 
These networks use a complex node similar to the higher-order learning units of Maxwell et 
al. 3 

NETWORK MODEL 

The network model used in this paper is now defined (see Figure 1). 

Definition 1: A recursive neural network, called a c-graph is a graph structure, 
r( V,E, e), where: 

• There is a set of CNs (network nodes), V, whose outputs can take a range of positive 
real values, Vi, between 0 and 1. There are N. nodes in the set. 

• There is a set of codons, E, that can take a range of positive real values, eij (for 
codon j of node i), between 0 and 1. There are Ne codons dedicated to each CN (the 
output of each codon is only used by its local CN), so there are a total of Ne N. codons 
in the network. The fan-in or order of a codon is Ie. It is assumed that leis the 
same for each codon, and Ne is the same for each CN. 
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Figure 1 - A ON 

• Cijk E C is a set of connections of ONs to codons, 1 <i ,k<N. and 1 <j <Ne , Cijk can 
take two values {O,l} indicating the existence of a connection from ON k to codon j 
of ON i . 0 

Definition 2: The value of ON i is 

Vi = F[8+~eijl 
J-l 

(1) 

The function, F, is a continuous non-linear, monotonic function, such as the sigmoid func­
tion. 0 

Definition 9: Define a mapping, D(i,j,x)_y, where x is an input vector to rand y is 
the Ie element input vector of codon j of ON i. That is, y has as its elements those ele­
ments of Zk of x where Cijk=1, \;/ k. 0 

The D function indicates the subset of x seen by codon j of ON i. Different input vec­
tors may map to the same codon vectors, e.g., D(i,j,x)-y and D(i,j,Zj-y, where x~7. 

Definition 4: The codon values eij are determined as follows. Let X( m) be input vector 
m of the M learned input vectors for ON i. For codon eij of ON i, let Tij be the set of I c­

dimensional vectors such that lij(m)E Tij , and D(i,j,X(m))-lij(m). That is, each vector, 
lij( m) in Tij consists of those subvectors of X( m) that are in codon ii's receptive field. 

The variable 1 indexes the L ( i ,i) vectors of Tij . The number of distinct vectors in Tij 
may be less than the total number of learned vectors (L(i,j)<M). Though the X(m) are 
distinct, the subsets, lij(m), need not be, since there is a possible many to one mapping of 
the x vectors onto each vector lij. 

Let Xl be the subset of vectors where vi=l (ON i is supposed to output a 1), and .xo be 
those vectors where vi=O, then define 

0#(/) - .izeof {D(i,i ,Z'( m)) " .,-q} (2) 

for q=O,1, and \;/ m that map to this I. That is, ni~(I) is the number of x vectors that map 
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into "Iij{l) where tlj-O and ni}{I) is the number of 7 vectors that map into "Iii ( I), where tI;-1. 

The compreaaion of a codon for a vector "Iii(1) then is defined as 

n.1.(/) He.·( I) = __ I.:....;;J -'---

IJ nj}(I)+nj~(I) 
(3) 

(Hqj(l)=O when both nt, nO-O.) The output of codon I), eii' is the maximum-likelyhood 
decoding 

(4) 

Where He indicates the likely hood of tlj-l when a vector 7 that maps to , is input, and' 
is that vector 1'(') where min[d.(1'('),y)] \I I, D(i,j,7)-V, and 7 is the current input vec­
tor. In other words, , is that vector (of the set of subset learned vectors that codon ij 
receives) that is closest (using distance measure d.) to V (the subset input vector). 0 

The output of a codon is the "most-likely" output according to its inputs. For exam­
ple, when there is no code compression at a codon, eji-1, if the "closest" (in terms of some 
measure of vector distance, e.g. Hamming distance) subvector in the receptive field of the 
codon belongs to a learned vector where the CN is to output a 1. The codons described here 
are very similar to those proposed by Marr 4 and implement ne!'Lrest-neighbor classification. 
It is assumed that codon function is determined statically prior to network operation, that 
is, the desired categories have already been learned. 

To measure performance, network capacity is used. 

Definition 5: The input noiae, Or, is the average d. between an input vector and the 
closest (minimum d.) learned vector, where d. is a measure of the "difference" between two 
vectors - for bit vectors this can be Hamming distance. The output noise, 0 0 , is the average 
distance between network output and the learned output vector associated with the closest 
learned input vector. The in/ormation gain, Gr , is just 

Gt = -10.[ ~~ I (5) 

o 
Definition 6: The capacity of a network is the maximum number of learned vectors such 

that the information gain, Gr , is strictly positive (>0). 0 

COMMUNICATION ANALOGY 

Consider a single connection network node, or CN. (The remainder of this paper will 
be restricted to a single CN.) Assume that the CN output value space is restricted to two 
values, 0 and 1. Therefore, the CN must decide whether the input it sees belongs to the 
class of "0" codes, those codes for which it remains off, or the class of "I" codes, those codes 
for which it becomes active. The inputs it sees in its receptive field constitute a subset of 
the input vectors (the D( ... ) function) to the network. It is also assumed that the CN is an 
ideal I-NN (Nearest Neighbor) classifier or feature detector. That is, given a particular set 
of learned vectors, the CN will classify an arbitrary input according to the class of the 
nearest (using d. as a measure of distance) learned vector. This situation is equivalent to 
the case where a single CN has a single codon whose receptive field size is equivalent to that 
of the CN. 

Imagine a sender who wishes to send one bit of information over a noisy channel. The 
sender has a probabilistic encoder that choses a code word (learned vector) according to 
some probability distribution. The receiver knows this code set, though it has no knowledge 
of which bit is being sent. Noise is added to the code word during its transmission over the 
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channel, which is analogous to applying an input vector to a network's inputs, where the 
vector lies within some learned vector's region. The "noise" is represented by the distance 
( d,,) between the input vector and the associated learned vector. 

The code word sent over the channel consists of those bits that are seen in the recep­
tive field of the ON being modeled. In the associative mapping of input vectors to output 
vectors, each ON must respond with the appropriate output (0 or 1) for the associated 
learned output vector. Therefore, a ON is a decoder that estimates in which class the 
received code word belongs. This is a classic block encoding problem, where increasing the 
field size is equivalent to increasing code length. As the receptive field size increases, the 
performance of the decoder improves in the presence of noise. Using communication theory 
then, the trade-off between interconnection costs as they relate to field size and the func­
tionality of a node as it relates to the correctness of its decision making process (output 
errors) can be characterized. 

As the receptive field size of a node increases, so does the redundancy of the input, 
though this is dependent on the particular codes being used for the learned vectors, since 
there are situations where increasing the field size provides no additional information. 
There is a point of diminishing returns, where each additional bit provides ever less reduc­
tion in output error. Another factor is that interconnection costs increase exponentially 
with field size. The result of these two trends is a cost performance measure that has a sin­
gle global maximum value. In other words, given a set of learned vectors and their proba­
bilities, and a set of interconnection costs, a "best" receptive field size can be determined, 
beyond which, increasing connectivity brings diminishing returns. 

SINGLE CODON, WITH NO CODE COMPRESSION 

A single neural element with a single codon and with no code compression can be 
modelled exactly as a communication channel (see Figure 2). Each network node is assumed 
to have a single codon whose receptive field size is equal to that of the receptive field size of 
the node. 

sender 

I I ~ I 

nOIsy I 

Ch.nne11~1 : ~ I recelver 

encoder transmitter receiver decoder 

ON 

Figure 2 - A Transmission Channel 
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The operation of the channel is as follows. A bit is input into the channel encoder, 
which selects a random code of length N and transmits that code over the channel. The 
receiver then, using nearest neighbor classification, decides if the original message was either 
a 0 or a 1. 

Let M be the number of code words used by the encoder. The rate* then indicates the 
density of the code space. 

o 

Definition 7: The rate, R, of a communication channel is 

R = 10gM 
- N (6) 

The block length, N, corresponds directly to the receptive field size of the codon, i.e., 
N=/e. The derivations in later sections use a related measure: 

Definition 8: The code utilization, b, is the number of learned vectors assigned to a par­
ticular code or 

(7) 

b can be written in terms of R 

b = 2N(R-l) (8) 

As b approaches 1, code compression increases. b is essentially unbounded, since M may be 
significantly larger than 2N. 0 

The decode error (information loss) due to code compression is a random variable that 
depends on the compression rate and the a priori probabilities, therefore, it will be different 
with different learned vector sets and codons within a set. As the average code utilization 
for all codons approaches 1, code compression occurs more often and codon decode error is 
unavoidable. 

Let Zi be the vector output of the encoder, and the input to the channel, where each 
element of Zi is either a 1 or o. Let Vi be the vector output of the channel, and the input to 
the decoder, where each element is either a 1 or a o. The Noisy Channel Coding Theorem is 
now presented for a general case, where the individual M input codes are to be dis­
tinguished. The result is then extended to a CN, where, even though M input codes are 
used, the ON need only distinguish those codes where it must output a 1 from those where it 
must output a o. The theorem is from Gallager (5.6.1)5. Random codes are assumed 
throughout. 

Theorem 1: Let a discrete memoryless channel have transition probabilities PNU/k) 
and, for any positive integer N and positive number R, consider the ensemble of (N,R) 
block codes in which each letter of each code word is independently selected according to 

the probability assignment Q(k). Then, for each message m, l<m< fe NR l and all p, 

O<p<l, the ensemble average probability of decoding error using maximum-likelyhood 
decoding satisfies 

(9) 

where 

·In the definitions given here and the theorems below, the notation of Gall ager 6 is used. Many of the 
definitions and theorems are also from Gallager. 
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l+P 

Eo(p,Q)=-ln~ ~1 Q(k)PU/kp!p 
i-il k-il 

(10) 

o 

These results are now adjusted ror our special case. 

Theorem 2: For a single CN, the average channel error rate ror random code vectors is 

Pc.,.~2q(l-q )Pe •m (11) 

where q=Q(k) \I k is the probability or an input vector bit being a 1. 0 

These results cover a wide range or models. A more easily computable expression can 
be derived by recognizing some or the restrictions inherent in the CN model. First, assume 
that all channel code bits are equally likely, that is, \I k, Q( k )=q, that the error model is 
the Binary Symmetric Channel (BSC), and that the errors are identically distributed and 
independent - that is, each bit has the same probability, f, or being in error, independent 
or the code word and the bit position in the code word. 

A simplified version or the above theorem can be derived. Maximizing P gives the 
tightest bounds: 

Pc.,. < 0.5 maxPe(p) 
O$p~l 

where (letting codon input be the block length, N = I c) 

P,(p) :'> eXP{-f,IE,(P)-PR1} 

The minimum value or this expression is obtained when p=1 (for q=0.5): 

Eo; -log 2 [ (o.sV,+O.SVl-,)' 1 

SINGLE-CODON WITH CODE COMPRESSION 

(12) 

(13) 

(14) 

Unfortunately, the implementation complexity of a codon grows exponentially with the 
size or the codon, which limits its practical size. An alternative is to approximate single 
codon function of a single CN with many smaller, overlapped codons. The goal is to main­
tain performance and reduce implementation costs, thus improving the cost/performance of 
the decoding process. As codons get smaller, the receptive field size becomes smaller relative 
to the number of CNs in the network. When this happens there is codon compression, or 
vector alia6ing, that introduces its own errors into the decoding process due to information 
loss. Networks can overcome this error by using multiple redundant codons (with overlap­
ping receptive fields) that tend to correct the compression error. 

Compression occurs when two code words requiring different decoder output share the 
same representation (within the receptive field or the codon) . The following theorem gives 
the probability of incorrect codon output with and without compression error. 

Theorem 9: For a BSC model where q=0.5, the codon receptive field is Ic, the code util­
ization is b, and the channel bits are selected randomly and independently, the probability 
of a codon decoding error when b > 1 is approximately 

Pc.,. < (l-f)"Pc- [1-(I-f)" ]0.5 (15) 

where the expected compression error per codon is approximated by 
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Pc = 0.5 (16) 

and from equations 13-14, when 6<1 

P,,,, < exp { - j, [-log [ [(O .• V.+O .• Vl-' J' I-RI} (17) 

Proof is given in Hammerstrom6 . 0 

As 6 grows, Pc approaches 0.5 asymptotically. Thus, the performance of a single codon 
degrades rapidly in the presence of even small amounts of compression. 

MULTIPLE CODONS WITH CODE COMPRESSION 

The use or mUltiple small codons is more efficient than a few large codons, but there 
are some fundamental performance constraints. When a codon is split into two or more 
smaller codons (and the original receptive field is subdivided accordingly), there are several 
effects to be considered. First, the error rate of each new codon increases due to a decrease 
in receptive field size (the codon's block code length). The second effect is that the code 
utilization, II, will increase for each codon, since the same number of learned vectors is 
mapped into a smaller receptive field. This change also increases the error rate per codon 
due to code compression. In fact, as the individual codon receptive fields get smaller, 
significant code compression occurs. For higher-order input codes, there is an added error 
that occurs when the order of the individual codons is decreased (since random codes are 
being assumed, this effect is not considered here). The third effect is the mass action of 
large numbers of codons. Even though individual codons may be in error, if the majority 
are correct, then the ON will have correct output. This effect decreases the total error rate. 

Assume that each ON has more than one codon, c>1. The union of the receptive fields 
for these codons is the receptive field for the ON with no no restrictions on the degree of 
overlap of the various codon receptive fields within or between ONs. For a ON with a large 
number of codons, the codon overlap will generally be random and uniformly distributed. 
Also assume that the transmission errors seen by different receptive fields are independent. 

Now consider what happens to a codon's compression error rate (ignoring transmission 
error for the time being) when a codon is replaced by two or more smaller co dons covering 
the same receptive field. This replacement process can continue until there are only 1 .. 
codons, which, incidentally, is analogous to most current neural models. For a multiple 
codon ON, assume that each codon votes a 1 or o. The summation unit then totals this 
information and outputs a 1 if the majority of codons vote for a 1, etc. 

Theorem 4: The probability of a ON error due to compression error is 

1 00 J.2 
Pc = "'\7?'; J e 2 dy 

21r c!2-cp.-l!2 (18) 

V cP.(i-p.) 

where Pc is given in equation 16 and q=0.5. 

Pc incorporates the two effects of moving to mUltiple smaller codons and adding more 
codons. Using equation 17 gives the total error probability (per bit), PeN: 

(19) 

Proof is in Hammerstrom6 . 0 
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For networks that perform association as defined in this paper, the connection weights 
rapidly approach a single uniform value as the size of the network grows. In information 
theoretic terms, the information content of those weights approaches zero as the compres­
sion increases. Why then do simple non-conjunctive networks (1-codon equivalent) work at 
alI? In the next section I define connectivity cost constraints and show that the answer to 
the first question is that the general associative structures defined here do not scale cost­
effectively and more importantly that there are limits to the degree of distribution of infor­
mation. 

CONNECTIVITY COSTS 

It is much easier to assess costs if some implementation medium is assumed. I have 
chosen standard silicon, which is a two dimensional surface where ON's and codons take up 
surface area according to their receptive field sizes. In addition, there is area devoted to 
the metal lines that interconnect the ONs. A specific VLSI technology need not be assumed, 
since the comparisons are relative, thus keeping ONs, codons, and metal in the proper pro­
portions, according to a standard metal width, m. (which also includes the inter-metal 
pitch). For the analyses performed here, it is assumed that m, levels of metal are possible. 

In the previous section I established the relationship of network performance, in terms 
of the transmission error rate, E, and the network capacity, M. In this section I present an 
implementation cost, which is total silicon area, A. This figure can then be used to derive a 
cost/performance figure that can be used to compare such factors as codon size and recep­
tive field size. There are two components to the total area: A ON, the area of a ON, and 
AMI, the area of the metal interconnect between ONs. AON consists of the silicon area 
requirements of the codons for all ONs. The metal area for local, intra-ON interconnect is 
considered to be much smaller than that of the codons themselves and of that of the more 
global, inter-ON interconnect, and is not considered here. The area per ON is roughly 

m. 2 
AON = cfeme(-) m, (20) 

where me is the maximum number of vectors that each codon must distinguish, for 6>1, 

me = 2". 

Theorem 5: Assume a rectangular, un6ounded* grid of ONs (all ONs are equi-distant 
from their four nearest neighbors), where each ON has a bounded receptive field of its nON 

nearest ONs, where "ON is the receptive field size for the ON, nON = C~e , where c is the 

number of codons, and R is the intra-ON redundancy, that is, the ratio of inputs to 
synapses (e.g., when R=l each ON input is used once at the ON, when R=2 each input is 
used on the average at two sites). The metal area required to support each ON's receptive 
field is (proof is giving by Hammerstrom6 ): 

[ 
"ON3 3"ON ~ 21 [ m.j2 

AMI = ----w-+ 2 +9"ON m, (21) 

The total area per ON, A, then is 

·Another implementation IItrategy ill to place &II eNII along a diagonal, which givell n 2 area. However, thill 
technique only works ror a bounded number or eNII and when dendritic computation can be lipread over a large 
area, which limits the range or p08llible eN implementationll. The theorem IItated here covers an infinite plane or 
eNII each with a bounded receptive Held. 
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(22) 

o 

Even with the assumption of maximum locality, the total metal interconnect area 
increases as the cube of the per CN receptive field size! 

SINGLE CN SIMULATION 

What do the bounds tell us about CN connectivity requirements? From simulations, 
increasing the CN's receptive field size improves the performance (increases capacity), but 
there is also an increasing cost, which increases faster than the performance! Another 
observation is that redundancy is quite effective as a means for increasing the effectiveness 
of a CN with constrained connectivity. (There are some limits to R, since it can reach a 
point where the intra-CN connectivity approaches that of inter-CN for some situations.) 
With a fixed nON, increasing cost-effectiveness (A 1m) is possible by increasing both order 
and redundancy. 

In order to verify the derived bounds, I also wrote a discrete event simulation of a CN, 
where a random set of learned vectors were chosen and the CN's codons were programmed 
according to the model presented earlier. Learned vectors were chosen randomly and sub­
jected to random noise, L The CN then attempted to categorize these inputs into two 
major groups (CN output = 1 and CN output = 0). For the most part the analytic bounds 
agreed with the simulation, though they tended to be optimistic in slightly underestimating 
the error. These differences can be easily explained by the simplifying assumptions that 
were made to make the analytic bounds mathematically tractable. 

DISTRmUTED VS. LOCALIZED 

Throughout this paper, it has been tacitly assumed that representations are distributed 
across a number of CNs, and that any single CN participates in a number of representa­
tions. In a local representation each CN represents a single concept or feature . It is the dis­
tribution of representation that makes the CN's decode job difficult, since it is the cause of 
the code compression problem. 

There has been much debate in the connectionist/neuromodelling community as to the 
advantages and disadvantages of each approach; the interested reader is referred to Hin­
ton7 , Baum et al. 8, and BallardQ • Some of the results derived here are relevant to this 
debate. A1s the distribution of representation increases, the compression per CN increases 
accordingly. It was shown above that the mean error in a codon's response quickly 
approaches 0.5, independent of the input noise . This result also holds at the CN level. For 
each individual CN, this error can be offset by adding more codons, but this is expensive 
and tends to obviate one of the arguments in favor of distributed representations, that is, 
the multi-use advantage, where fewer CNs are needed because of more complex, redundant 
encodings. A1s the degree of distribution increases, the required connectivity and the code 
compression increases, so the added information that each codon adds to its CN's decoding 
process goes to zero (equivalent to all weights approaching a uniform value) . 

SUMMARY AND CONCLUSIONS 

In this paper a single CN (node) performance model was developed that was based on 
Communication Theory. Likewise, an implementation cost model was derived . 

The communication model introduced the codon as a higher-order decoding element 
and showed that for small codons (much less than total CN fan-in, or convergence) code 
compression, or vector aliasing, within the codon's receptive field is a severe problem for 
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large networks. As code compression increases, the information added by any individual 
codon to the CN's decoding task rapidly approaches zero . 

The cost model showed that for 2-dimensional silicon, the area required for inter-node 
metal connectivity grows as the cube of a CN's fan-in. 

The combination of these two trends indicates that past a certain point, which is 
highly dependent on the probability structure of the learned vector space, increasing the 
fan-in of a CN (as is done, for example, when the distribution of representation is increased) 
yields diminishing returns in terms of total cost-performance. Though the rate of diminish­
ing returns can be decreased by the use of redundant, higher-order connections. 

The next step is to apply these techniques to ensembles of nodes (CNs) operating in a 
competitive learning or feature extraction environment. 
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