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PHASOR NEURAL NETVORKS 

Andr~ J. Noest, N.I.B.R., NL-ll0S AZ Amsterdam, The Netherlands. 

ABSTRACT 

A novel network type is introduced which uses unit-length 2-vectors 

for local variables. As an example of its applications, associative 

memory nets are defined and their performance analyzed. Real systems 

corresponding to such 'phasor' models can be e.g. (neuro)biological 

networks of limit-cycle oscillators or optical resonators that have 

a hologram in their feedback path. 

INTRODUCTION 

Most neural network models use either binary local variables or 

scalars combined with sigmoidal nonlinearities. Rather awkward coding 

schemes have to be invoked if one wants to maintain linear relations 

between the local signals being processed in e.g. associative memory 

networks, since the nonlinearities necessary for any nontrivial 

computation act directly on the range of values assumed by the local 

variables. In addition, there is the problem of representing signals 

that take values from a space with a different topology, e.g. that 

of the circle, sphere, torus, etc. Practical examples of such a 

signal are the orientations of edges or the directions of local optic 

flow in images, or ~he phase of a set of (sound or EM) waves as they 

arrive on an array of detectors. Apart from the fact that 'circular' 

signals occur in technical as well as biological systems, there are 

indications that some parts of the brain (e.g. olfactory bulb, cf. 

Dr.B.Baird's contribution to these proceedings) can use limit-cycle 

oscillators formed by local feedback circuits as functional building 

blocks, even for signals without circular symmetry. Vith respect to 

technical implementations, I had speculated before the conference 

whether it could be useful to code information in the phase of the 

beams of optical neurocomputers, avoiding slow optical switching 

elements and using only (saturating) optical amplification and a 
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hologram encoding the (complex) 'synaptic' weight factors. At the 

conference, I learnt that Prof. Dana Anderson had independently 

developed an optical device (cf. these proceedings) that basically 

works this way, at least in the slow-evolution limit of the dynamic 

hologram. Hopefully, some of the theory that I present here can be 

applied to his experiment. In turn, such implementations call for 

interesting extensions of the present models. 

BASIC ELEMENTS OF GENERAL PHASOR NETVORKS 

Here I study the perhaps simplest non-scalar network by using unit­

length 2-vectors (phasors) as continuous local variables. The signals 

processed by the network are represented in the relative phaseangles. 

Thus, the nonlinearities (unit-length 'clipping') act orthogonally to 

the range of the variables coding the information. The behavior of 

the network is invariant under any rigid rotation of the complete set 

of phasors, representing an arbitrary choice of a global reference 
I 

phase. Statistical physicists will recognize the phasor model as a 

generalization of 02-spin models to include vector-valued couplings. 

All 2-vectors are treated algebraically as complex numbers, writing 

Ixl for the length, Ixl for the phase-angle, and x for the complex 

conjugate of a 2-vector x. 

A phasor network then consists of N»l phasors s. , with Is.l=l, 
1 1 

interacting via couplings c .. , with C .. = O. The c .. are allowed 
1J 11 1J 

to be complex-valued quantities. For optical implementations this 

is clearly a natural choice, but it may seem less so for biological 

systems. However, if the coupling between two limitcycle oscillators 

with frequency f is mediated via a path having propagationdelay d, 

then that coupling in fact acquires a phaseshift of f.d.2~ radians. 

Thus, complex couplings can represent such systems more faithfully 

than the usual models which neglect propagationdelays altogether. 

Only 2-point couplings are treated here, but multi-point couplings 

c. 'k' etc., can be treated similarly. 
1) 

The dynamics of each phasor depends only on its local field 

h.= ! ~ c .. s. + n. 
1 z:4- 1J J 1 

J 

where z is the number of inputs 
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c .. ~O per cell and n. is a local noise term (complex and Gaussian). 
1J 1 

Various dynamics are possible, and yield largely similar results: 

Continuous-time, parallel evolution: ("type A") 

d (/s./) = Ih. l.sin(/h.1 - Is./) 
(IT 1 1 1 1 

Discrete-time updating: s.(t+dt)= h.1 Ih. I , either serially in 
111 

random i-sequence ("type B"), or in parallel for all i ("type C"). 

The natural time scale for type-B dynamics is obtained by scaling 

the discrete time-interval eft as ,.., liN ; type-C dynamics has cl't=l. 

LYAPUNOV FUNCTION (alias "ENERGY", or "HAMILTONIAN" ) 

If one limits the attention temporarily to purely deterministic 

(n.=O) models, then the question suggests itself whether a class of 
1 

couplings exists for which one can easily find a Lyapunov function 

i.e. a function of the network variables that is monotonic under the 
1 dynamics. A well-known example is the 'energy' of the binary and 

scalar Hopfield models with symmetric interactions. It turns out that 

a very similar function exists for phasor networks with type-A or B 

dynamics and a Hermitian matrix of couplings. 

-H = L 5. h. = 
• 1 1 

(lIz) L 5. c .. s. 
• . 1 1J J 
1,J 1 

Hermiticity (c .. =c .. ) makes H real-valued and non-increasing in time. 
1J J 1 

This can be shown as follows, e.g. for the serial dynamics (type B). 

Suppose, without loss of generality, that phasor i=l is updated. 

Then -z H = + Ls. c ' l sl 
1>1 1 1 

+ I. I: 
i ,j>l 

-s. c .. s. 
1 1J J 

z 51 h1 + 

Vith Hermitian couplings, 

sl' 2: c ' 1 5. + constant. 
i>l 1 1 

H becomes real-valued, and one also has 

I:c' l 5. l:c1 · 
-

z h1 s. = 
i>1 1 1 i>l 1 

1 

Thus, - H - constant = 51 h1 + sl h1 = 2 Re(sl h1) . 
Clearly, H is minimized with respect to sl by sl(t+1) = hll I h11 • 
Type-A dynamics has the same Lyapunovian, but type C is more complex. 

The existence of Hermitian interactions and the corresponding energy 

function simplifies greatly the understanding and design of phasor 

networks, although non-Hermitian networks can still have a Lyapunov-
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function, and even networks for which such a function is not readily 

found can be useful, as will be illustrated later. 

AN APPLICATION: ASSOCIATIVE MEMORY. 

A large class of collective computations, such as optimisations 

and content-addressable memory, can be realised with networks having 

an energy function. The basic idea is to define the relevant penalty 

function over the solution-space in the form of the generic 'energy' 

of the net, and simply let the network relax to minima of this energy. 

As a simple example, consider an associative memory built within the 

framework of Hermitian phasor networks. 

In order to store a set of patterns in the network, i.e. to make 

a set of special states (at least approximatively) into attractive 

fixed points of the dynamics, one needs to choose an appropriate 

set of couplings. One particularly simple way of doing this is via 

the phasor-analog of "Hebb's rule" (note the Hermiticity) 

rp s(.k). -s(.k), h (k). h .. I d k c .. = were s. IS p asor 1 In earne pattern . 
IJ k 1 J 1 

The rule is understood to apply only to the input-sets 'i of each i. 

Such couplings should be realisable as holograms in optical networks, 

but they may seem unrealistic in the context of biological networks 

of oscillators since the phase-shift (e.g. corresponding to a delay) 

of a connection may not be changeable at will. However, the required 

coupling can still be implemented naturally if e.g. a few paths with 

different fixed delays exist between pairs of cells. The synaps in 

each path then simply becomes the projection of the complex coupling 

on the direction given by the phase of its path, i.e. it is just a 

classical Hebb-synapse that computes the correlation of its pre- and 

post-synaptic (imposed) signals, which now are phase-shifted versions 

of the phasors s~~)The required complex c .. are then realised as the 
1 IJ 

vector sum over at least two signals arriving via distinct paths with 

corresponding phase-shift and real-valued synaps. Two paths suffice 

if they have orthogonal phase-shifts, but random phases will do as 

well if there are a reasonable number of paths. 

Ve need to have a concise way of expressing how 'near' any state 

of the net is to one or more of the stored patterns. A natural way 
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of doing this is via a set of p order parameters called "overlaps" 

1 
N 

N -(k) 
11: s .. s. I 

• 1 1 
1 

; 1 < k < p • 
- -

Note the constraint on the p overlaps 
P 2 I Mk ~ 1 if all the patterns 
k 

are orthogonal, or merely random in the limit N-.QO. This will be 

assumed from now on. Also, one sees at once that the whole behaviour 

of the network does not depend on any rigid rotation of all phasors 

over some angle since H, Mk , c .. and the dynamics are invariant under 
1J 

multiplication of all s. by a fixed phasor : s~ = S.s. with ISI=1. 
III 

Let us find the performance at low loading: N,p,z .. oo, with p/z .. O 

and zero local noise. Also assume an initial overlap m)O with only 

one pattern, say with k=1. Then the local field is 

hi 
1 f s~k~ s~k) h(1) h7 where = - ~s .. i + , z 

j' i J k 1 J 1 

hP~ 1 s~1~ I: sP~s. (1) 
+ O(1//Z) with S~f(i);ISI=1, - = m1 . si • S 

1 Z 
1 jl'i J J 

* ~ fs~k). L: s~k~s. O( ./( p-l) Iz') and h. = . 
1 z k=2 1 j(~i J J 

Thus, perfect recall (M1=1) occurs in one 'pass' at loadings p/z ... O. 

EXACTLY SOLVABLE CASE: SPARSE and ASYMMETRIC couplings 

Although it would be interesting to develop the full thermodynamics 

of Hermitian phasor networks with p and z of order N (analogous to the 

analysis of the finite-T Hopfield model by the teams of Amit 2 and van 

Hemmen3), I will analyse here instead a model with sparse, asymmetric 

connectivity, which has the great advantages of being exactly solvable 

with relative ease, and of being arguably more realistic biologically 

and more easily scalable technologically. In neurobiological networks 

a cell has up to z;104 asymmetric connections, whereas N;101~ This 

probably has the same reason as applies to most VLSI chips, namely to 

alleviate wiring problems. For my present purposes, the theoretical 

advantage of getting some exact results is of primary interest4 

Suppose each cell has z incoming connections from randomly selected 

other cells. The state of each cell at time t depends on at most zt 
. t 112 cells at time t=O. Thus, If z «N and N large, then the respective 
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4 trees of 'ancestors' of any pair cells have no cells in common. In 
x particular, if z_ (logN) , for any finite x, then there are no common 

ancestors for any finite time t in the limit N-.OO. For fundamental 

information-theoretic reasons, one can hope to be able to store p 

patterns with p at most of order z for any sort of 2-point couplings. 

Important questions to be settled are: Yhat are the accuracy and 

speed of the recall process, and how large are the basins of the 

attractors representing recalled patterns? 

Take again initial conditions (t=O) with, say, m(t)= Hl > H>l = O. 

Allowing again local random Gaussian (complex) noise n., the local 

f · ld b . f '1' . h h(l) h* 1 Ie s ecome, In now amI Iar notatIon, .= . + . + n .• 
1 1 1 1 

As in the previous section, the h~l)term consists of the 'signal' 
1 

m(t).s. (modulo the rigid rotation S) and a random term of variance 
1 * at most liz. For p _ z, the h. term becomes important. Being sums of 

1 * 
z(p-1) phasors oriented randomly relative to the signal, the h. are 

1 

independent Gaussian zero-mean 2-vectors with variance (p-1)/z , as 

p,z and N .. oo . Finally, let the local noises n. have variance r2. 
1 

Then the distribution of the s.(t+l) phasors can be found in terms of 
1 2 * 

the signal met) and the total variance a=(p/z)+r of the random h.+n .• 
1 1 

After somewhat tedious algebraic manipulations (to be reported in 

detail elsewhere) one obtains the dynamic behaviour of met) 

and 
m(t+1) = F(m(t),a) for discrete parallel (type-C) dynamics, 

d met) = F(m(t),a) - met) 
Tt 

for type-A or type-B dynamics , 

where the function F(m,a) = 

m +" 2 
Idx.(1+cos2x).expl-(m.sinx) la].(l+erfl(m.cosx)/~) 
-1'C 

* * The attractive fixed points H (a)= F(H ,a) represent the retrieval 

accuracy when the loading-pIus-noise factor equals a. See figure 1. 

* 2 3 For a«l one obtains the expansion 1-H (a) = a/4 + 3a 132 + O(a ). 

* 112 The recall solutions vanish continuously as H _(a -a) at a =tc/4. c c 

One also obtains (at any t) the distribution of the phase scatter of 

the phasors around the ideal values occurring in the stored pattern. 
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P(/u./) = (1/2n).exp(-m2/a).(1+I1t.L.exp(L2).(1+erf(L» , 
1 

where L = (m/la).cos(/u./) , and 
1 

-(k) u.= s. s. (modulo S). 
111 

Useful approximations for the high, respectively low M regimes are: 

M »ra: PUu./) (MIl'a1l).exp[-(M./u./)2 /a ] ; I/u./1 «"XI2 
1 1 1 

M «fi : PUu./) = (1I21t).(1+L • ./;l) 
1 

Figure ~ 

RETRIEVAL-ERROR and BASIN OF ATTRACTION versus LOADING + NOISE. 
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DISCUSSION 

It has been shown that the usual binary or scalar neural networks 

can be generalized to phasor networks, and that the general structure 

of the theoretical analysis for their use as associative memories can 

be extended accordingly. This suggests that many of the other useful 

applications of neural nets (back-prop, etcJ can also be generalized 

to a phasor setting. This may be of interest both from the point of 

view of solving problems naturally posed in such a setting, as well 

as from that of enabling a wider range of physical implementations, 

such as networks of limit-cycle oscillators, phase-encoded optics, 

or maybe even Josephson-junctions. 

The performance of phasor networks turns out to be roughly similar 

to that of the scalar systems; the maximum capacity p/z=~/4 for 

phasor nets is slightly larger than its value 2/n for binary nets, 

but there is a seemingly faster growth of the recall error 1-M at 

small a (linear for phasors, against exp(-1/(2a» for binary nets). 

However, the latter measures cannot be compared directly since they 

stem from quite different order parameters. If one reduces recalled 

phasor patterns to binary information, performance is again similar. 

Finally, the present methods and results suggest several roads to 

further generalizations, some of which may be relevant with respect 

to natural or technical implementations. The first class of these 

involves local variables ranging over the k-sphere with k>l. The 

other generalizations involve breaking the O(n) (here n=2) symmetry 

of the system, either by forcing the variables to discrete positions 

on the circle (k-sphere), and/or by taking the interactions between 

two variables to be a more general function of the angular distance 

between them. Such models are now under development. 
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