
Teaching Artificial Neural Systems to Drive:

Manual Training Techniques for Autonomous Systems

J. F. Shepanski and S. A. Macy

TRW, Inc .

One Space Park, 02/1779

Redondo Beach, CA 90278

Abetract

693

We have developed a methodology for manually training autononlous control systems

based on artificial neural systems (ANS). In applications where the rule set governing an expert's

decisions is difficult to formulate, ANS can be used to ext.ra.c:t rules by associating the information

an expert receives with the actions h~ takes . Properly constructed networks imitate rules of

behavior that permits them to function autonomously when they are trained on the spanning set

of possible situations. This training can be provided manually, either under the direct. supervision

or a system trainer, or indirectly using a background mode where the network assimilates training

data as the expert perrorms his day-to-day tasks. To demonstrate these methods we have trained

an ANS network to drive a vehicle through simulated rreeway traffic.

I ntJooducticn

Computational systems employing fine grained parallelism are revolutionizing the way we

approach a number or long standing problems involving pattern recognition and cognitive process­

ing. The field spans a wide variety or computational networks, rrom constructs emulating neural

runctions, to more crystalline configurations that resemble systolic arrays. Several titles are used

to describe this broad area or research, we use the term artificial neural systems (ANS). Our con­

cern in this work is the use or ANS ror manually training certain types or autonomous systems

where the desired rules of behavior are difficult to rormulate.

Artificial neural systems consist of a number or processing elements interconnected in a

weighted, user-specified fashion, the interconnection weights acting as memory ror the system.

Each processing element calculatE',> an output value based on the weighted sum or its inputs. In

addition, the input data is correlated with the output or desired output (specified by an instructive

agent) in a training rule that is used to adjust the interconnection weights. In this way the ne~

work learns patterns or imitates rules of behavior and decision making.

The partiCUlar ANS architecture we use is a variation of Rummelhart et. al. [lJ multi-layer

perceptron employing the generalized delta rule (GD R). Instead of a single, multi-layer ,struc­

ture, our final network has a a multiple component or "block" configuration where one blOt'k'~

output reeds into another (see Figure 3). The training methodology we have developed is not

tied to a particular training rule or architecture and should work well with alternative networks

like Grossberg's adaptive resonance model[2J.

© American Institute of Physics 1988

694

The equations describing the network are derived and described in detail by Rumelhart et.

al.[l]. In summary, they are:

Transfer function:

Weight adaptation rule:

Error calculation:

•
Sj = E WjiOi;

i-O

Aw ·· =(1- a ..)n ··0 ·0· + a ··Awp.revious .
l' l' ., l' J • l' l' '

'" OJ =0j{1- OJ) E0.tW.ti,
.t=1

(1)

(2)

(3)

where OJ is the output or processing element j or a sensor input, wi is the interconnection weight

leading from element ito i, n is the number of inputs to j, Aw is the adjustment of w, '1 is the

training constant, a is the training "momentum," OJ is the calculated error for element i, and m

is the Canout oC a given element. Element zero is a constant input, equal to one, so that. WjO is

equivalent to the bias threshold of element j. The (1- a) factor in equation (2) differs from stan­

dard GDR formulation, but. it is useful for keeping track of the relative magnitudes of the two

terms. For the network's output layer the summation in equation (3) is replaced with the

difference between the desired and actual output value of element j.

These networks are usually trained by presenting the system with sets of input/output data

vectors in cyclic fashion, the entire cycle of database presentation repeated dozens of times . This

method is effective when the training agent is a computer operating in batch mode, but would be

intolerable for a human instructor. There are two developments that will help real-time human

training. The first is a more efficient incorporation of data/response patterns into a network. The

second, which we are addressing in this paper, is a suitable environment wherein a man and ANS

network can interact in training situation with minimum inconvenience or boredom on the

human's part. The ability to systematically train networks in this fashion is extremely useful for

developing certain types of expert systems including automatic signal processors, autopilots,

robots and other autonomous machines. We report a number of techniques aimed at facilitating

this type of training, and we propose a general method for teaching these networks .

System. Development

Our work focuses on the utility of ANS for system control. It began as an application of

Barto and Sutton's associative search network[3]. Although their approach was useful in a

number of ways, it fell short when we tried to use it for capturing the subtleties of human

decision-making. In response we shifted our emphasis rrom constructing goal runctions for

automatic learning, to methods for training networks using direct human instruction. An integral

part or this is the development or suitable interraces between humans, networks and the outside

world or simulator. In this section we will report various approaches to these ends, and describe a

general methodology for manually teaching ANS networks . To demonstrate these techniques we

taught a network to drive a robot vehicle down a simulated highway in traffic. This application

combines binary decision making and control of continuous parameters.

Initially we investigated the use or automatic learning based on goal functions[3] for train­

ing control systems. We trained a network-controlled vehicle to maintain acceptable following

distances from cars ahead or it. On a graphics workstation, a one lane circular track was

695

constructed and occupied by two vehicles: a network-controlled robot car and a pace car that

varied its speed at random .. Input data to the network consisted of the separation distance and

the speed of the robot vehicle . The values of a goal function were translated into desired output

for GDR training. Output controls consisted of three binary decision elements : 1) accelerate one

increment of speed, 2) maintain speed, and 3) decelerate one increment of speed. At all times

the desired output vector had exactly one of these three elements active . The goal runction was

quadratic with a minimum corresponding to the optimal following distance. Although it had no

direct control over the simulation, the goal function positively or negatively reinforced the
system's behavior.

The network was given complete control of the robot vehicle, and the human trainer had

no influence except the ability to start and terminate training. This proved unsatisractory because
the initial system behavior--governed by random interconnection weights--was very unstable. The

robot tended to run over the car in rront of it before significant training occurred . By carerully

halting and restarting training we achieved stable system behavior. At first the rollowing distance

maintained by the robot car oscillated as ir the vehicle was attached by a sj)ring to the pace car.

This activity gradually damped. Arter about one thousand training steps the vehicle maintained

the optimal following distance and responded quickly to changes in the pace car's speed.

Constructing composite goal functions to promote more sophisticated abilities proved

difficult, even ill-defined, because there were many unspecified parameters. To generate goal

runctions ror these abilities would be similar to conventional programming--the type or labor we

want to circumvent using ANS. On the other hand, humans are adept at assessing complex situa­

tions and making decisions based on qualitative data, but their "goal runctions" are difficult ir not

impossible to capture analytically. One attraction of ANS is that it can imitate behavior based on

these elusive rules without rormally specifying them. At this point we turned our efforts to

manual training techniques.

The initially trained network was grafted into a larger system and augmented with addi­

tional inputs: distance and speed inrormation on nearby pace cars in a second traffic lane, and an

output control signal governing lane changes . The original network's ability to maintain a safe

following distance was retained intact. Thts grafting procedure is one of two methods we studied

for adding ne abilities to an existin, system. (The second, which employs a block structure, is
described below.) The network remained in direct control of the robot vehicle, but a human

trainer instructed it when and when not to change lanes. His commands were interpreted as the

desired output and used in the GDR training algorithm. This technique, which we call coaching,

proved userul and the network quickly correlated its environmental inputs with the teacher's

instructions. The network became adept at changing lanes and weaving through traffic. We found

that the network took on the behavior pattern or its trainer. A conservative teacher produced a

timid network, while an aggressive tzainer produced a network that tended to cut off other auto­

mobiles and squeeze through tight openings . Despite its success, the coaching method of training

did not solve the problem or initial network instability.

The stability problem was solved by giving the trainer direct control over the simulation.

The system configuration (Figure 1), allows the expert to exert control or release it to the n~t­

work. During initial tzaining the expert is in the driver's seat while the network acts the role of

696

apprentice. It receives sensor information, predicts system commands, and compares its predic­

tions. against the desired output (ie. the trainer's commands) . Figure 2 shows the data and com­

mand flow in detail. Input data is processed through different channels and presented to the

trainer and network. Where visual and audio formats are effective for humans, the network uses

information in vector form. This differentiation of data presentation is a limitation of the system;

removing it is a cask for future ~search. The trainer issues control commands in accordance with

his assigned ~k while the network takes the trainer's actions as desired system responses and

correlates these with the input. We refer to this procedure as master/apprentice training, network

training proceeds invisibly in the background as the expert proceeds with his day to day work. It
avoids the instability problem because the network is free to make errors without the adverse

consequence of throwing the operating environment into disarray.

I

World (--> sensors)
or

Simulation

Input
Expert

Commands

l+ I Ne',WOrk I
~ Actuation ~ - J +

~------------------~ ~------~---------------------------~

Figure 1. A scheme for manually training ANS networks. Input data is received by both
the network and trainer. The trainer issues commands that are actuated (solid command
line). or he coaches the network in how it ought to respond (broken command line).

Input
data

Preprocessing
tortunan

Preprocessing
for network

--+ Commands

~ 9'l. Actuation

.1-r" N twork --+ Predicted
e t commands

Training
'-------------. rule

Coaching/emphasis

Fegure 2. Data and convnand flow In the training system. Input data is processed and presented
to the trainer and network. In master/appre~ice training (solid command Hne). the trainer's
orders are actuated and the network treats his commands as the system's desired output. In
coaching. the network's predicted oonvnands are actuated (broken command line). and the
trainer influences weight adaptation by specifying the desired system output and controlHng
the values of trailing constants-his -suggestions- are not cirec:tty actuated.

Once initial. bacqround wainmg is complete, the expert proceeds in a more formal

manner to teach the network. He releases control of the command system to the network in

order to evaluate ita behavior and weaknesses. He then resumes control and works through a

697

series of scenarios designed to train t.he network out of its bad behavior. By switching back and

forth. between human and network control, the expert assesses the network's reliability and

teaches correct responses as needed. We find master/apprentice training works well for behavior

involving continuous functions, like steering. On the other hand, coaching is appropriate for deci­

sion Cunctions, like when Ule car ought to pass. Our methodology employs both techniques.

The Driving Network

The fully developed freeway simulation consists of a two lane highway that is made of

joined straight and curved segments which vary at. random in length (and curvature). Several

pace cars move at random speeds near the robot vehicle. The network is given the tasks of track­

ing the road, negotiating curves. returning to the road if placed far afield, maintaining safe dis­

tances from the pace cars, and changing lanes when appropriate. Instead of a single multi-layer

structure, the network is composed of two blocks; one controls the steering and the other regu­

lates speed and decides when the vehicle should change lanes (Figure 3). The first block receives

information about the position and speed of the robot vehicle relative to other ears in its vicinity.

Its output is used to determine the automobile's speed and whet.her the robot should change
lanes . The passing signal is converted to a lane assignment based on the car's current lane posi­

tion. The second block receives the lane assignment and data pertinent to the position and orien­

tation of the vehicle with respect to the road. The output is used to determine the steering angle

of the robot car.

Block 1 Inputs
Constant.

Speed.
Disl. Ahead, Pl •
Disl. Ahead, Ol •

Dist. Behind, Ol •
ReI. Speed Ahead, Pl •
ReI. Speed Ahead, Ol •

ReI. Speed Behind, Ol •

Constant •
Rei. Orientation •

-..--t~ lane Nurmer •
lateral Dist. •

Curvature •

Convert lane change to lane number

• • •

Outputs

I Speed
Change lanes

• Steering Angle

Figure 3. The two blocks of the driving ANS network. Heavy arrows Indicate total interconnectivity
between layers. PL designates the traffic lane presently oca.apied by the robot vehicle, Ol refers
to the other lane, QJrvature refers to the road, lane nurrber is either 0 or 1, relative orientation and
lateral distance refers to the robot car's direction and podion relative to the road'l direction and
center line. respectively. .

698

The input data is displayed in pictorial and textual form to the driving instructor. He views
the road and nearby vehicles from the perspective of the driver's seat or overhead. The network

receives information in the form of a vector whose elements have been scaled to unitary order,
O(1) . Wide ranging input parameters, like distance, are compressed using the hyperbolic tangent

or logarithmic functions . In each block , the input layer is totally interconnected to both the ou~

put and a hidden layer. Our scheme trains in real time, and as we discuss later, it trains more

smoothly with a small modification of the training algorithm .

Output is interpreted in two ways: as a binary decision or as a continuously varying param­

eter. The first simply compares the sigmoid output against a threshold. The second scales the

output to an appropriate range for its application . For example, on the steering output element, a

0.5 value is interpreted as a zero steering angle. Left and right turns of varying degrees are ini­

tiated when this output is above or below 0.5, respectively.

The network is divided into two blocks that can be trained separately. Beside being con­

ceptually easier to understand , we find this component approach is easy to train systematically.

Because each block has a restricted, well-defined set of tasks, the trainer can concentrate

specifically on those functions without being concerned that other aspects of the network behavior

are deteriorating.

"'e trained the system from bottom up, first teaching the network to stay on the road ,

negotiate curves , chan~e lanes, and how to return if the vehicle strayed off the highway. Block 2,

responsible for steering, learned these skills in a few minutes using the master/apprentice mode.

It tended to steer more slowly than a human but further training progressively improved its

responsiveness.

We experimented with different trammg constants and "momentum" values. Large "

values, about 1, caused weights to change too coarsely. " values an order of magnitude smaller

worked well . We found DO advantage in using momentum for this method of training , in fact,

the system responded about three times more slowly when 0 =0.9 than when the momentt:m

term was dropped. Our standard training parameters were" =0.2, and Cl' =00

a) ~ Db)~~
=D-=-~=~~--=~--= ~
Figure 4. Typical behavior of a network-controlled vehicle (dam rectangle) when trained by
a) a conservative miYer, ItI:I b}. reckless driver. Speed Is indicated by the length of the arrows.

After Block 2 "Was trained, we gave steering control to the network and concentrated on

teaching the network to change lanes and adjust speed. Speed control in this ('"asP. was a continu­

ous variable and was best taught using master/apprentice training. On the other hand, the binary

decision to change lanes was best taught by coaching . About ten minutes of training were needed

to teach the network to weave through traffic. We found that the network readily adapts the

699

behavioral pattern of its trainer . A conservative trainer generated a network that hardly ever

passed, while an aggressive trainer produced a network that drove recklessly and tended to cut off

other-cars (Figure 4).

Discussion

One of the strengths of el:pert 5ystf'mS based on ANS is that the use of input data in the

decision making and control proc~ss does not have to be specified . The network adapts its inter­

nal weights to conform to input/ output correlat.ions it discovers . It is important, however, that

data used by the human expert is also available to the network. The different processing of sen­

sor data for man and network may have important consequences, key information may be

presented to the man but not. the machine.

This difference in data processing is particularly worrisome for image data where human

ability to extract detail is vastly superior to our au tomatic image processing capabilities. Though

we would not require an image processing system to understand images, it would have to extract

relevant information from cluttered backgrounds. Until we have sufficiently sophisticated algo­

rithms or networks to do this, our efforts at constructing expert systems which halldle image data

are handicapped .

Scaling input data to the unitary order of magnitude is important for training stability. 111is

is evident from equations (1) and (2) . The sigmoid transfer function ranges from 0.1 to 0.9 in

approximat.eiy four units, that is, over an 0(1) domain. If system response must change in reac­

tion to a large, O(n) swing of a given input parameter, the weight associated with that input will

be trained toward an O(n- 1) magnitude. On the other hand, if the same system responds to an

input whose range is O(1), its associated weight will also be 0(1). The weight adjustment equa­

tion does not recognize differences in weight magnitude, therefore relatively small weights will

undergo wild magnitude adjustments and converge weakly. On the other hand, if all input param­

eters are of the same magnitude their associated weights will reflect this and the training constant

can be adjusted for gentle weight convergence . Because the output of hidden units are con­

strained between zero and one, O(1) is a good target range for input parameters. Both the hyper­

bolic tangent and logarithmic functions are useful for scaling wide ranging inputs . A useful form

of the latter is

.8[I+ln(x/o)] if o<x,

.8x/o if-o::;x::;o,

-.8[I+ln(-%/o)] ifx<-o,

(4)

where 0>0 and defines the limits of the intermediate linear section, and .8 is a scaling factor.

This symmetric logarithmic function is continuous in its first derivative, and useful when network

behavior should change slowly as a parameter increases without bound. On the othl'r hand, if the

system should approach a limiting behavior, the tanh function is appropriate.

Weight adaptation is also complicated by relaxing the common practice of restricting inter­

connections to adjacent layers. Equation (3) shows that the calculated error for a hidden layer­

given comparable weights, fanouts and output errors-will be one quarter or less than that of the

700

output layer. This is caused by the slope ractor, 0 .. (1- oil. The difference in error magnitudes is

not noticeable in networks restricted to adjacent layer interconnectivity. But when this constraint

is released the effect of errors originating directly from an output unit has 4" times the magnitude

and effect of an error originating from a hidden unit removed d layers from the output layer.

Compared to the corrections arising from the output units, those from the hidden units have little
influence on weight adjustment, and the power of a multilayer structure is weakened . The system

will train if we restrict connections to adjacent layers, but it trains slowly. To compensate for this

effect we attenuate the error magnitudes originating from the output layer by the above factor.

This heuristic procedure works well and racilitates smooth learning.

Though we have made progress in real-time learning systems using GDR, compared to

humans-who can learn from a single data presentation-they remain relatively sluggish in learning

and response rates. We are interested in improvements of the GDR algorithm or alternative

architectures that facilitate one-shot or rapid learning. In the latter case we are considering least

squares restoration techniquesl4] and Grossberg and Carpenter's adaptive resonance modelsI3,5].

The construction of automated expert systems by observation of human personnel is

attractive because of its efficient use of the expert's time and effort. Though the classic AI

approach of rule base inference is applicable when such rules are clear cut and well organized, too

often a human expert can not put his decision making process in words or specify the values of

parameters that influence him . The attraction or ANS based systems is that imitations of expert

behavior emerge as a natural consequence of their training.

Referenees

1) D. E. Rumelhart, G . E. Hinton, and R. J. Williams, "Learning Internal Representations by

Error Propagation," in Parallel D~tributed Proceuing: Ezploration~ in the Micro~trvcture 0/ Cognition,

Vol. I, D. E . Rumelhart and J. L. McClelland (Eds.)' chap. 8, (1986), Bradford BooksjMIT Press,

Cambridge

2) S. Grossberg, Studie~ 0/ Mind and Brain, (1982), Reidel, Boston

3) A. Barto and R. Sutton, "Landmark Learning: An Illustration of Associative Search," Biologi­

caIC,6emetiu,42, (1981), p.l

4) A. Rosenfeld and A . Kak, Digital Pieture Proeming, Vol. 1, chap. 7, (1982), Academic Press,

New York

5) G. A. Carpenter and S. Grossberg, "A Massively Parallel Architecture for a Self-organizing

Neural Pattern Recognition Machine," Computer Vision, Graphiu and Image Procu,ing, 37,

(1987), p.54

