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ABSTRACT 

Self-organization of multi-layered networks can be realized 
by time-sequential organization of successive neural layers. 
Lateral inhibition operating in the surround of firing cells in 
each layer provides for unsupervised capture of excitation 
patterns presented by the previous layer. By presenting patterns 
of increasing complexity, in co-ordination with network self­
organization, higher levels of the hierarchy capture concepts 
implicit in the pattern set. 

INTRODUCTION 

A fundamental difficulty in self-organization of 
hierarchical, multi-layered, networks of simple neuron-like cells 
is the determination of the direction of adjustment of synaptic 
link weights between neural layers not directly connected to input 
or output patterns. Several different approaches have been used 
to address this problem. One is to provide teaching inputs to the 
cells in internal layers of the hierarchy. Another is use of 
back-propagated error signals 1 ,2 from the uppermost neural layer, 
which is fixed to a desired outfut pattern. A third is the 
"competitive learning" mechanism, in which a Hebbian synaptic 
modification rule is used, with mutual inhibition among cells of 
each layer preventing them from becoming conditioned to the same 
patterns. 

The use of explicit teaching inputs is generally felt to be 
undesirable because such signals must, in essence, provide 
individual direction to each neuron in internal layers of the 
network. This requires extensive control signals, and is somewhat 
contrary to the notion of a self-organizing system. 

Back-propagation provides direction for link weight 
modification of internal layers based on feedback from higher 
neural layers. This method allows true self-organization, but at 
the cost of specialized neural pathways over which these feedback 
signals must travel. 

In this report, we describe a simple feed-forward method for 
self-organization of hierarchical neural networks. The method is 
a variation of the technique of competitive learning. It calls 
for successive neural layers to initiate modification of their 
afferent synaptic link weights only after the previous layer has 
completed its own self-organization. Additionally, the nature of 
the patterns captured can be controlled by providing an organized 
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group of 
layer of 
layers. 

pattern sets which would excite the lowermost (input) 
the network in concert with training of successive 

such a collection of pattern sets might be viewed as a 
"lesson plan." 

MODEL 

The network is composed of neuron-like cells, organized in 
hierarchical layers. Each cell is excited by variably weighted 
afferent connections from the outputs of the previous (lower) 
layer. Cells of the lowest layer take on the values of the input 
pattern. The cells themselves are of the McCulloch-pitts type: 
they fire only after their excitation exceeds a threshold, and are 
otherwise inactive. Let Si(t) do,,} be the state of cell i at 
time t. Let Wij' a real number ranging from 0 to " be the 
weight, or strength, of the synapse connecting cell i to cell j. 
Let eij be the local excitation of cell i at the synaptic 
connect~on from cell j. The excitation received along each 
synaptic connection is integrated locally over time as follows: 

e· . (t) = e .. ( t-l) + w· . S· (t) ( 1 ) 
~J ~J ~J ~ 

Synaptic connections may, therefore be viewed as capacitive. 
The total excitation, Ej , is the sum of the local excitations of 
cell j. 

= Ee .. (t) 
~ ~J 

The use of the time-integrated activity of 
connection between two neurons, instead of the 

( 2) 

a synaptic 
more usual 

instantaneous classification of neurons as "active" or "inactive", 
permits each synapse to provide a statistical measure of the 
activity of the input, which is assumed to be inherently 
stochastic. It also embodies the principle of learning based on 
locally available information and allows for implementations of 
the synapse as a capacitive element. 

Over time, the total excitation of individual neurons on a 
give layer will increase. When excitation exceeds a threshold, a, 
then the neuron fires, otherwise it is inactive. 

= if 
else 

Sj (t) = 

E j (t) > a 

o 

( 3) 

During a neuron I s training phase, a modified Hebbian rule 
results in changes in afferent synaptic link weights such that, 
upon firing, synapses with integrated activity greater than mean 
activity are reinforced, and those with less than mean activity 
are weakened. More formally, if Sj(t) = 1 then the synapse 
weights are modified by 

(4 ) 

Here, n represents the fan-in to a cell, and k is a small, 
positive constant. The "sign" function specifies the direction of 
change and the "sine" function determines the magnitude of 
change. The sine curve provides the property that intermediate 



link weights are subject to larger modifications than weights near 
zero or saturation. This helps provide for stable end-states 
after learning. 

Another effect of the integration of synaptic activity may be 
seen. A synapse of small weight is allowed to contribute to the 
firing of a cell (and hence have its weight incremented) if a 
series of patterns presented to the network consistently excite 
that synapse. The sequence of pattern presentations, therefore, 
becomes a factor in network self-organization. 

Upon firing, the active cell inhibits other cells in its 
vicinity (lateral inhibi tion) • This mechanism supports 
unsupervised, competi ti ve learning. By preventing cells in the 
neighborhood of an active cell from modifying their afferent 
connections in response to a pattern, they are left available for 
capture of new patterns. Suppose there are n cells in a 
particular level. The lateral inhibitory mechanism is specified 
as follows: 

If S . (t) = 1 then 
eik(t) = 0 for all i, tor k = (j-m)mod(n) to (j+m)mod(n) (5) 

Here, m specifies the size of a "neighborhood." A neighborhood 
significantly larger than a pattern set will result in a number of 
untrained cells. A neighborhood smaller than the pattern set will 
tend to cause cells to attempt to capture more than one pdttern. 

Schematic representations of an individual cell and the 
network organization are provided in Figures 1 and 2. 

It is the pattern generator, or "instructor", that controls 
the form that network organization will take. The initial set of 
patterns are repeated until the first layer is trained. Next, a 
new pattern set is used to excite the lowermost (trained) level of 
the network, and so, induce training in the next layer of the 
hierarchy. Each of the patterns of the new set is composed of 
elements (or subpatterns) of the old set. The structure of 
successive pattern sets is such that each set is either a more 
complex combination of elements from the previous set (as words 
are composed of letters) or a generaliza tlon of some concept 
implicit in the previous set (such as line orientation). 

Network organization, as described above, requires some 
exchange of control signals between the network and the 
instructor. The instructor requires information regarding firing 
of cells during training in order to switch to a new patterns 
appropriately. Obviously, if patterns are switched before any 
cells fire, learning will either not take place or will be smeared 
over a number of patterns. If a single pattern excites the 
network until one or more cells are fully trained, subsequent 
presentation of a non-orthogonal pattern could cause the trained 
cell to fire before any naive cell because of its saturated link 
weights. The solution is simply to allow gradual training over 
the full complement of the pattern set. After a few firings, a 
new pattern should be provided. After a layer has been trained, 
the instructor provides a control signal to that layer which 
permanently fixes the layer's afferent synaptic link weights. 
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Fig. 1. Schematic of neuron. 
Shading of afferent synaptic connections 
indicates variations in levels of local 
time-integrated excitation. 

Fig. 2. Schematic of network showing 
lateral inhibition and forward excitation. 
Shading of neurons, indicating degree of 
training, indicates time-sequential 
organization of successive neural layers. 



SIMULATIONS 

As an example, simulations were run in which a network was 
taught to differentiate vertical from horizontal line 
orientation. This problem is of interest because it represents a 
case in which pattern sets cannot be separated by a single layer 
of connections. This is so because the set of vertical (or 
horizontal) lines has activity at all positions within the input 
matrix. 

Two variations were simulated. 
input was a 4x4 matrix. This was 
unidirectional links to 25 cells. 

In the first simulation, the 
completely connected with 

These cell$ had fixed 
inhibi tory connections to the nearest 
(using a circular arrangement), and 
connectivity, a ring of eight cells, 
nearest neighbor on either side. 

five cells on either side 
excited, using complete 

wi th inhibition over the 

Ini tially, all excitatory link weights were small, random 
numbers. Each pattern of the initial input consisted of a single 
active row or column in the input matrix. Active elements had, 
during any clock cycle, a probability of 0.5 of being "on", while 
inactive elements had a 0.05 probability of being "on." 

After exposure to the initial pattern set, all cells on the 
first layer captured some input pattern, and all eight patterns 
had been captured by two or more cells. 

The next pattern set consisted of two subsets of four 
vertical and four horizontal lines. The individual lines were 
presented until a few firings took place within the trained layer, 
and then another line from the same subset was used to excite the 
network. After the upper layer responed with a few firings, and 
some training occured, the other set was used to excite the 
network in a similar manner. After five cycles, all cells on the 
uppermost layer had become sensitive, in a postionally independent 
manner, to lines of a vertical or a horizontal orientation. Due 
to lateral inhibition, adj acent cells developed opposite 
orientation specificities. 

In the second simulation, a 6x6 input matrix was connected to 
six cells, which were, in turn, connected to two cells. For this 
network, the lateral inhibitory range extended over the entire set 
of cells of each layer. The initial input set consisted of six 
patterns, each of which was a pair of either vertical lines or 
horizontal lines. After excitation by this set, each of the six 
middle level cells became sensitized to one of the input 
patterns. Next, the set of vertical and horizontal patterns were 
grouped into two sUDsets: vertical lines and horizontal lines. 
Individual patterns from one subset were presented until a cell, 
of the previously trained layer, fired. After one of the two 
cells on the uppermost layer fired, the procedure was repeated 
with the pattern set of opposite orientation. After 25 cycles, 
the two cells on the uppermost layer had developed opposite 
orientation specificities. Each of these cells was shown to be 
responsive, in a positionally independent manner, to any single 
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line of appropriate orientation. 

CONCLUSION 

Competitive learning mechanisms, when applied sequentially to 
successive layers in a hierarchical structure, can capture pattern 
elements, at lower levels of the hierarchy, and their 
generalizations, or abstractions, at higher levels. 

In the above mechanism, learning is externally directed, not 
by explicit teaching signals or back-propagation, but by provision 
of instruction sets consisting of patterns of increasing 
complexity, to be input to the lowermost layer of the network in 
concert with successive organization of higher neural layers. 

The central difficulty of this method involves the design of 
pattern sets - a procedure whose requirements may not be obvious 
in all cases. The method is, however, attractive due to its 
simplicity of concept and design, providing for multi-level self­
organization without direction by elaborate control signals. 

Several research goals suggest themselves: 1) simplification 
or elimination of control signals, 2) generalization of rules for 
structuring of pattern sets, 3) extension of this learning 
principle to recurrent networks, and 4) gaining a deeper 
understanding of the role of time as a factor in network self­
organization. 

REFERENCES 

t. D. E. Rumelhart and G.E. Hinton, Nature 323, 533 (1986). 
2. K. A. Fukushima, BioI. Cybern. 55, 5 (1986). 
3. D. E. Rumelhart and D. Zipser, Cog. Sci. 9, 75 (1985). 


