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ABSTRACT 

We donsider a class of neural networks whose performance can be 
analyzed and geometrically visualized in a signal space 
environment. Alternating projection neural networks (APNN' s) 
perform by alternately projecting between two or more constraint 
sets. Criteria for desired and unique convergence are easily 
established. The network can be configured in either a homogeneous 
or layered form. The number of patterns that can be stored in the 
network is on the order of the number of input and hidden neurons. 
If the output neurons can take on only one of two states, then the 
trained layered APNN can be easily configured to converge in one 
iteration. More generally, convergence is at an exponential rate. 
Convergence can be improved by the use of sigmoid type 
nonlinearities, network relaxation and/or increasing the number of 
neurons in the hidden layer. The manner in which the network 
responds to data for which it was not specifically trained (i.e. 
how it generalizes) can be directly evaluated analytically. 

1. INTRODUCTION 

In this paper, we depart from the performance analysis 
techniques normally applied to neural networks. Instead, a signal 
space approach is used to gain new insights via ease of analysis 
and geometrical interpretation. Building on a foundation laid 
elsewherel - 3 , we demonstrate that alternating projecting neural 
network's (APNN's) formulated from such a viewpoint can be 
configured in layered form or homogeneously. 

Significiantly, APNN's have advantages over other neural 
network architectures . For example, 
(a) APNN's perform by alternatingly projecting between two or more 

constraint sets. Criteria can be established for proper 
iterative convergence for both synchronous and asynchronous 
operation. This is in contrast to the more conventional 
technique of formulation of an energy metric for the neural 
networks, establishing a lower energy bound and showing that 
the energy reduces each iteration4- 7 • Such procedures generally 
do not address the accuracy of the final solution. In order to 
assure that such networks arrive at the desired globally 
minimum energy, computationaly lengthly procedures such as 
simulated annealing are usedB - 10 • For synchronous networks, 
steady state oscillation can occur between two states of the 
same energyll 

(b) Homogeneous neural networks such as Hopfield's content 
addressable memory4,12-14 do not scale well, i.e. the capacity 
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of Hopfield's neural networks less than doubles when the number 
of neurons is doubled 15-16. Also, the capacity of previously 
proposed layered neural networks17 ,18 is not well understood. 
The capacity of the layered APNN'S, on the other hand, is 
roughly equal to the number of input and hidden neurons19 • 

(c) The speed of backward error propagation learning 17-18 can be 
painfully slow. Layered APNN's, on the other hand, can be 
trained on only one pass through the training data 2 • If the 
network memory does not saturate, new data can easily be 
learned without repeating previous data. Neither is the 
effectiveness of recall of previous data diminished. Unlike 
layered back propagation neural networks, the APNN recalls by 
iteration. Under certain important applications, however, the 
APNN will recall in one iteration. 

(d) The manner in which layered APNN's generalizes to data for 
which it was not trained can be analyzed straightforwardly. 

The outline of this paper is as follows. After establishing the 
dynamics of the APNN in the next section, sufficient criteria for 
proper convergence are given. The convergence dynamics of the APNN 
are explored. Wise use of nonlinearities, e.g. the sigmoidal type 
nonlinearities2 , improve the network's performance. Establishing a 
hidden layer of neurons whose states are a nonlinear function of 
the input neurons' states is shown to increase the network's 
capacity and the network's convergence rate as well. The manner in 
which the networks respond to data outside of the training set is 
also addressed. 

2. THE ALTERNATING PROJECTION NEURAL NETWORK 

In this section, we 
Nonlinear modificiations 

established the 
to the network 

performance attributes are considered later. 

notation for the APNN. 
made to impose certain 

Consider a set of N continuous level linearly independent 
library vectors (or patterns) of length L> N: {£n I OSnSN}. We form 
the library matrix !:. = [£1 1£2 I ... I£N ] and the neural network 
interconnect matrixa T = F (!:.T !:. )-1 FT where the superscript T 

denotes transposition. We divide the L neurons into two sets: one 
in which the states are known and the remainder in which the states 
are unknown. This partition may change from application to 
application. Let Sk (M) be the state of the kth node at time M. If 
the kth node falls into the known catego~, its state is clamped to 
the known value (i.e. Sk (M) = Ik where I is some library vector). 
The states of the remaining floating neurons are equal to the sum 
of the inputs into the node. That is, Sk (M) = i k , where 

L 

i k = r tp k sp (1) 
p = 1 

a The interconnect matrix is better trained iteratively2. To include 
a new library vector £, the interconnects are updated as 

~T ~T~ ~ ~ ! + (EE ) / (E E) where E = (.!. - !) f. 
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If all neurons change state simultaneously (i.e. sp = sp (M-l) ), then 
the net is said to operate synchronously. If only one neuron changes 
state at a time, the network is operating asynchronously. 

Let P be the number of clamped neurons. We have proven l that the 
neural states converge strongly to the extrapolated library vector 
if the first P rows of ! (denoted KP) form a matrix of full column 
rank. That is, no column of ~ can be expressed as a linear 
combination of those remainin.,v. 2 By strong convergenceb , we mean 
lim II 1 (M) - t II == 0 where II x II == iTi. 
M~OO 

Lastly, note that subsumed in the criterion that ~ be full 
rank is the condition that the number of library vectors not exceed 
the number of known neural states (P ~ N). Techniques to bypass this 
restriction by using hidden neurons are discussed in section 5. 

Partition Notation: 
that neurons 1 through 
floating. We adopt the 

Without loss of generality, we will assume 
P are clamped and the remaining neurons are 
vectOr partitioning notation 

7 IIp] 1 = ~ 
io 

where Ip is the P-tuple of the first P elements of 1. and 10 is a 
vector of the remaining Q = L-P. We can thus write, for example, ~ 
[ f~ If~ I ... If: ]. Using this partition notation, we can define 
the neural clamping operator by: 7 _ IL] 

!l ~ - 7 
10 

Thus, the first P elements of I are clamped to l P • The remaining Q 
nodes "float". 

Partition notation 
useful. Define 

for the interconnect matrix will also prove 

T r!2 I !lJ 
L~ 

where ~2 is a P by P and !4 a Q by Q matrix. 

3. STEADY STATE CONVERGENCE PROOFS 

For purposes of later reference, we address convergence of the 
network for synchronous operation. Asynchronous operation is 
addressed in reference 2. For proper convergence, both cases 
require that ~ be full rank. For synchronous operation, the 
network iteration in (1) followed by clamping can be written as: 

~ ~ 
s(M+l) =!l ~ sCM) (2) 

As is illustrated inl - 3, this operation can easily be visualized 
in an L dimensional signal space. 

b The referenced convergence proofs prove strong convergence in an 
infinite dimensional Hilbert space. In a discrete finite 
dimensional space, both strong and weak convergence imply 
uniform convergencel9 • 2D , i.e. 1(M)~t as M~oo. 
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For a given partition with P clamped neurons, (2) can be 
written in partitioned form as 

[ ;'(M+J l*J[ I' J !l (3) 

!3!4 ~o (M) 

The states of the P clamped neurons are not affected by their input 
sum. Thus, there is no contribution to the iteration by ~1 and ~2. 
We can equivalently write (3) as 

-+0 -;tp-+o 
s (M+ 1) = !3 f +!4 s (M) (4 ) 

We show in that if fp is full rank, then the spectral radius 
(magnitude of the maximum eigenvalue) of ~4 is strictly less than 
one19 • It follows that the steady state solution of (4) is: 

(5 ) 

where, since fp is full rank, we have made use of our claim that 

-+0 -;to 
S (00) = f (6) 

4. CONVERGENCE DYNAMICS 

In this section, we explore different convergence dynamics of 
the APNN when fp is full column rank. If the library matrix 
displays certain orthogonality characteristics, or if there is a 
single output (floating) neuron, convergence can be achieved in a 
single iteration. More generally, convergence is at an exponential 
rate. Two techniques are presented to improve convergence. The 
first is standard relaxation. Use of nonlinear convex constraint at 
each neuron is discussed elsewhere2 ,19. 

One Step Convergence: There are at least two important cases where 
the APNN converges other than uniformly in one iteration. Both 
require that the output be bipolar (±1). Convergence is in one 
step in the sense that 

-;to • -+0 
f = Slgn s (1) (7) 

where the vector operation sign takes the sign of each element of 
the vector on which it operates. 

CASE 1: If there is a single output neuron, then, from (4), (5) and 
(6), sO (1) (1 - t LL ) ,0 . Since the eigenvalue of the (scalar) 
matrix, !4 = tL L lies between zero and one1 9, we conclude that 1-
t LL > O. Thus, if ,0 is restricted to ±1, (7) follows immediately. A 
technique to extend this result to an arbitrary number of output 
neurons in a layered network is discussed in section 7. 

CASE 2: For certain library matrices, the APNN can also display one 
step convergence. We showed that if the columns of K are orthogonal 
and the columns of fp are also orthogonal, then one synchronous 
iteration results in floating states proportional to the steady 
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state values19 • Specifically, for the floating neurons, 

tP 2 

~o (1) II II 10 

111112 
(8) 

An important special case of (8) is when the elements of Fare 
all ±1 and orthogonal. If each element were chosen by a 50-50 coin 
flip, for example, we would expect (in the statistical sense) that 
this would be the case. 

Exponential Convergence: More generally, the convergence rate of 
the APNN is exponential and is a function of the eigenstructure of 
.!4. Let {~r I 1 ~ r ~ Q } denote the eigenvectors of .!4 and {Ar } the 
corresponding eigenvalues. Define ~ = [ ~l 1~2 I ... I~o] and the 
diagonal matrix A4 such that diag ~ = [AI A2 ... Ao] T • Then we can 

. A T - • -+ T-+ -. T • 1 f 
Wrl.te :!.4.=~ _4 ~. Defl.ne x (M) =~ s (M). S.;nce ~ ~ = I, \t...,. fol ows T ro~ 

the--+differe-ace equatJ-on i~ ('Up that x(M+l)=~:!.4 ~ ~ sCM) + ~ .!3 1 
=~4 x (M) + g where g = ~.!3 t. The solution to this difference 
equation is 

M 

't' "r [ 1 _ "kM + 1 ] ,,- 1 1J /\ok g k = /\0 ( 1 - /\ok) g k (9) 
r = 0 

Since the spectral radius of !4 is less than one19 , ~: ~ 0 as M ~ 
~. Our steady state result is thus xk (~) = (1 - Ak ) gk. Equation 

. ["M+l] (9) can therefore be wrl.tten as x k (M) = 1 - /\ok x k (~). The 
eCflivalent of a "time constant" in this exponential convergence is 
1/ tn (111 Ak I). The speed of convergence is thus dictated by the 
spectral radius of .!4. As we have shown19 later, adding neurons in 
a hidden layer in an APNN can significiantly reduce this spectral 
radius and thus improve the convergence rate. 

Relaxation: Both the projection and clamping operations can be 
relaxed to alter the network's convergence without affecting its 
steady state20 - 21 • For the interconnects, we choose an appropriate 
value of the relaxation parameter a in the interval (0,2) and 

9 
redefine the interconnect matrix as T aT + (1 a)I or 
equivalently, 

= {a(tnn -l)+1 

a tnrn 

; n =m 

TO see the effect of such relaxation on convergence, we need 
simply exam\ne the resulting ::dgenvalues. If .!4 has eigenvalues 
{Ar I, then .!4 has eigenvalues Ar = 1 + a (Ar - 1). A Wl.se choice of a 
reduces the spectral radius of .!~ with respect to that of .!4' and 
thus decreases the time constant of the network's convergence. 

Any of the operators projecting onto convex sets can be relaxed 
without affecting steady state convergence19 - 20 • These include the 
~ operator2 and the sigmoid-type neural operator that projects onto 
a box. Choice of stationary relaxation parameters without numerical 
andlor empirical study of each specific case, however, generally 
remains more of an art than a science. 
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5. LAYERED APNN' S 

The networks thus far considered are homogeneous in the sense 
that any neuron can be clamped or floating. If the partition is 
such that the same set of neurons always provides the network 
stimulus and the remainder respond, then the networks can be 
simplified. Clamped neurons, for example, ignore the states of the 
other neurons. The corresponding interconnects can then be deleted 
from the neural network architecture. When the neurons are so 
partitioned, we will refer the APNN as layered. 

In this section, we explore various aspects of the layered APNN 
and in particular, the use of a so called hidden layer of neurons 
to increase the storage capacity of the network. An alternate 
architecture for a homogeneous APNN that require only Q neurons has 
been reported by Marks 2 • 

Hidden Layers: In its generic form, the APNN cannot perform a 
simple exclusive or (XOR). Indeed, failure to perform this same 
operation was a nail in the coffin of the perceptron22 . Rumelhart 
et. al.1 7 -18 revived the percept ron by adding additional layers of 
neurons. Although doing so allowed nonlinear discrimination, the 
iterative training of such networks can be painfully slow. With the 
addition of a hidden layer, the APNN likewise generalizes. In 
contrast, the APNN can be trained by looking at each data vector 
only once1 • 

Although neural networks will not likely be used for performing 
XOR's, their use in explaining the role of hidden neurons is quite 
instructive. The library matrix for the XOR is 

f- [~ ~ ~ ~ 1 
The first two rOwS of F do not form a matrix of full column rank. 
Our approach is to augment fp with two more rows such that the 
resulting matrix is full rank. Most any nonlinear combination of 
the first two rowS will in general increase the matrix rank. Such 
a procedure, for example, is used in ~-classifiers23 . possible 
nonlinear operations include multiplication, a logical "AND" and 
running a weighted sum of the clamped neural states through a 
memoryless nonlinearity such as a sigmoid. This latter alteration 
is particularly well suited to neural architectures. 

To illustrate with the exclusive or (XOR) , a new hidden neural 
state is set equal to the exponentiation of the sum of the first 
two rows. A second hidden neurons will be assigned a value equal to 
the cosine of the sum of the first two neural states multiplied by 
Tt/2. (The choice of nonlinearities here is arbitrary. ) The 
augmented library matrix is 

0 0 1 1 
0 1 0 1 

!:.+ 1 e e e 2 

1 0 0 -1 

0 1 1 0 
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In either the training or look-up mode, the states of the hidden 
neurons are clamped indirectly as a result of clamping the input 
neurons. 

The playback architecture for this network is shown in Fig .1. 
The interconnect values for the dashed lines are unity. The remain­
ing interconnects are from the projection matrix formed from !+. 

Geometrical Interpretation In lower dimensions, the effects of 
hidden neurons can be nicely illustrated geometrically. Consider 
the library matrix 

F = 

Clearly IP = (1/2 1) . Let the 
determined by the nonlineariy x 2 

the first row of f. Then 

!+ = [ t: I t; ] 

1 
1/2 ] 

neurons 
where x 

[ 1/2 
= 1i4 

in the hidden layer be 
denotes the elements in 

1;2 J 
The corresponding geometry is shown in Fig. 2 for x the input 

neuron, y the output and h the hidden neuron. The augmented library 
vectors are shown and a portion of the generated subspace is shown 
lightly shaded. The surface of h = x 2 resembles a cylindrical lens in 
three dimensions. Note that the linear variety corresponding to f = 
1/2 intersects the cylindrical lens and subspace only at 1+. 
Similarly, the x = 1 plane intersects the lens and subspace at 12 • 

Thus, in both cases, clamping the input corresponding to the first 
element of one of the two library vectors uniquely determines the 
library vector. 

Convergence Improvement: Use of additional neurons in the hidden 
layer will improve the convergence rate of the APNN19 • Specifically, 
the spectral radius of the .!4 matrix is decreased as additional 
neurons are added. The dominant time constant controlling 
convergence is thus decreased. 

Capacity: Under the assumption that nonlinearities are chosen such 
that the augmented fp matrix is of full rank, the number of vectors 
which can be stored in the layered APNN is equal to the sum of the 
number of neurons in the input and hidden layers. Note, then, that 
interconnects between the input and output neurons are not needed 
if there are a sufficiently large number of neurons in the hidden 
layer. 

6. GENERALIZATION 

We are assured that the APNN will converge to the desired 
result if a portion of a training vector is used to stimulate the 
network. What, however, will be the response if an initialization 
is used that is not in the training set or, in other words, how 
does the network generalize from the training set? 

To illustrate generalization, we return to the XOR problem. Let 
S5 (M) denote the state of the output neuron at the Mth (synchronous) 
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Figure 1. Illustration of a 
layered APNN fori performing 
an XOR. 

l( 

Figure 2. A geometrical 
illustration of the use of an 
x 2 nonlinearity to determine 
the states of hidden neurons. 

Figure 3. Response of the 
elementary XOR APNN using an 
exponential and trignometric 
nonlinearity in the hidden 
layer. Note that, at the 
corners, the function is 
equal to the XOR of the 

Figure 4. The generalization 
of the XOR networks formed by 
thresholding the function in 
Fig . 3 at 3/4. Different 
hidden layer nonlinearities 
result in different 
generalizations. 
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iteration. If S1 and S2 denote the input clamped value, then 
S5 (m+1) =t1 5 Sl + t 25 S2 + t35 S3 + t4 5 S4 + t5 5 S5 (m) where S3 =exp (Sl +S2 ) 
and S4 =cos [1t (S1 + S2) /2] To reach steady state, we let m tend to 
infinity and solve for S5 (~) : 

1 

A plot of S5 (~) versus (S1,S2) is shown in Figure 3. The 
plot goes through 1 and zero according to the XOR of the corner 
coordinates. Thresholding Figure 3 at 3/4 results in the 
generalization perspective plot shown in Figure 4. 

To analyze the network's generalization when there are more 
than one output neuron, we use (5) of which (10) is a special case. 
If conditions are such that there is one step convergence, then 
generalization plots of the type in Figure 4 can be computed from 
one network iteration using (7). 

7. NOTES 

(a) There clearly exists a great amount of freedom in the choice of 
the nonlinearities in the hidden layer. Their effect on the 
network performance is currently not well understood. One can 
envision, however, choosing nonlinearities to enhance some 
network attribute such as interconnect reduction, classification 
region shaping (generalization) or convergence acceleration. 

(b) There is a possibility that for a given set of hidden neuron 
nonlinearities, augmentation of the fp matrix coincidentally 
will result in a matrix of deficent column rank, proper 
convergence is then not assured. It may also result in a poorly 
conditioned matrix, convergence will then be quite slow. A 
practical solution to these problems is to pad the hidden layer 
with additional neurons. As we have noted, this will improve 
the convergence rate. 

(c) We have shown in section 4 that if an APNN has a single 
bipolar output neuron, the network converges in one step in 
the sense of (7). Visualize a layered APNN with a single 
output neuron. If there are a sufficiently large number of 
neurons in the hidden layer, then the input layer does not 
need to be connected to the output layer. Consider a second 
neural network identical to the first in the input and hidden 
layers except the hidden to output interconnects are 
different. Since the two networks are different only in the 
output interconnects, the two networks can be combined into a 
singlee network with two output neurons. The interconnects 
from the hidden layer to the output neurons are identical to 
those used in the single output neurons architectures. The new 
network will also converge in one step. This process can 
clearly be extended to an arbitrary number of output neurons. 
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