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ABSTRACT 

Recently, many modifications to the McCulloch/Pitts model have been proposed 
where both learning and forgetting occur. Given that the network never saturates (ceases 
to function effectively due to an overload of information), the learning updates can con­
tinue indefinitely. For these networks, we need to introduce performance measmes in addi­
tion to the information capacity to evaluate the different networks. We mathematically 
define quantities such as the plasticity of a network, the efficacy of an information vector, 
and the probability of network saturation. From these quantities we analytically compare 
different networks. 

1. Introduction 

Work has recently been undertaken to quantitatively measure the computational 
aspects of network models that exhibit some of the attributes of neural networks. The 
McCulloch/Pitts model discussed in [1] was one of the earliest neural network models to be 
analyzed. Some computational properties of what we call a Hopfield Associative Memory 
Network (HAMN) :similar to the McCulloch/Pitts model was discussed by Hopfield in [2]. 
The HAMN can be measured quantitatively by defining and evaluating the information 
capacity as [2-6] have shown, but this network fails to exhibit more complex computational 
capabilities that neural network have due to its simplified structure. The HAMN belongs 
to a class of networks which we call static. In static networks the learning and recall pro­
cedures are separate. The network first learns a set of data and after learning is complete, 
recall occurs. In dynamic networks, as opposed to static networks, updated learning and 
associative recall are intermingled and continual. In many applications such as in adaptive 
communications systems, image processing, and speech recognition dynamic networks are 
needed to adaptively learn the changing information data. This paper formally develops 
and analyzes some dynamic models for neural networks. Some existing models [7-10] are 
analyzed, new models are developed, and measures are formulated for evaluating the per­
formance of different dynamic networks. 

In [2-6]' the asymptotic information capacity of the HAMN is defined and evaluated. 
In [4-5]' this capacity is found by first assuming that the information vectors (Ns) to be 
stored have components that are chosen randomly and independently of all other com­
ponents in all IVs. The information capacity then gives the maximum number of Ns that 
can be stored in the HAMN such that IVs can be recovered with high probability during 
retrieval. At or below capacity, the network with high probability, successfully recovers 
the desired IVs. Above capacity, the network quickly degrades and eventually fails to 
recover any of the desired IVs. This phenomena is sometimes referred to as the "forgetting 
catastrophe" [10]. In this paper we will refer to this phenomena as network saturation. 

There are two ways to avoid this phenomena. The first method involves learning a 
limited number of IVs such that this number is below capacity. After this leaming takes 
place, no more learning is allowed. Once learning has stopped, the network does not 
change (defined as static) and therefore lacks many of the interesting computational 
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capabilities that adaptive learning and neural network models have . The second method is 
to incorporate some type oC forgetting mechanism in the learning structure so that the 
inCormation stored in the network can never exceed capacity. This type of network would 
be able to adapt to the changing statistics of the IVs and the network would only be able 
to recall the most recently learned IVs. This paper focuses on analyzing dynamic networks 
that adaptively learn new inCormation and do not exhibit network saturation phenomena 
by selectively Corgetting old data. The emphasis is on developing simple models and much 
oC the analysis is performed on a dynamic network that uses a modified Hebbian learning 
rule. 

Section 2 introduces and qualitatively discusses a number of network models that are 
classified as dynamic networks. This section also defines some pertinent measures Cor 
evaluating dynamic network models. These measures include the plasticity of a network, 
the probability oC network saturation, and the efficacy of stored IVs. A network with no 
plasticity cannot learn and a network with high plasticity has interconnection weights that 
exhibit large changes. The efficacy oC a stored IV as a function oC time is another impor­
tant parameter as it is used in determining the rate at which a network forgets informa­
tion. 

In section 3, we mathematically analyze a simple dynamic network referred to as the 
Attenuated Linear Updated Learning (AL UL) network that uses linear updating and a 
modified Hebbian rule. Quantities introduccd in section 3 are analytically dctcrmincd for 
the ALUL network. By adjusting the attenuation parameter of the AL UL network, the 
Corgetting factor is adjusted. It is shown that the optimal capacity for a large AL UL net­
work in steady state defined by (2.13,3.1) is a factor of e less than the capacity of a 
HAMN. This is the tradeoff that must be paid for having dynamic capabilities. We also 
conjecture that no other network can perform better than this network when a worst case 
criterion is used. Finally, section 4 discusses further directions for this work along with pos­
sible applications in adaptive signal processing. 

2. Dynamic Associative Memory Networks 

The network models discussed in this paper are based on the concept of associative 
memory. Associative memories are composed of a collection of interconnected elements 
that have data storage capabilities. Like other memory structures, there are two opera­
tions that occur in associative memories. In the learning operation (referred to as a write 
operation for conventional memories), inCormation is stored in the network structure. In 
the recall operation (referred to as a read operation for conventional memories), informa­
tion is retrieved from the memory structure. Associative memories recall information on 
the basis of data content rather than by a specific address. The models that we consider 
will have learning and recall operations that are updated in discrete time with the activa­
tion state XU) consisting of N cells that take on the values {-l,1}. 

2.1. Dynamic Network MeasureS 

General associative memory networks are described by two sets of equations. If we 
let XU) represent the activation state at time i and W( k) represent the weight matrix 01· 

interconnection state at time k then the activation or recall equation is described by 

X(j+ 1) = f (XU), W(k)), i? 0, k? 0, X(O) = X (2.1 ) 

where X is the data probe vector used for reca.ll. The learning algorithm or int.erconnec­
tion equation is described by 

W(k+ 1) = g(V(i),O::; i< k, W(O)) 

where {V( i)} are the information vectors (IV)s to be stored and W(O) is the initial state of 
the interconnection matrix. Usually the learning algorithm time scale is much longer than 
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the recall equation time scale so that W in (2.1) can be considered time invariant. Often 
(2.1) is viewed as the equation governing short term memory and (2 .2) is the equation 
governing long term memory. From the Hebbian hypothesis we note that the data probe 
vectors should have an effect on the interconnection matrix W. If a number of data p!'Obe 
vectors recall an IV V( a') , the strength of recall of the IV V( i) should be increased by 
appropriate modification of W. If another IV is never recalled, it should gradually be for­
gotten by again adjusting terms of W. Following the analysis in [4,5] we assume that all 
components of IVs introduced are independent and identically distributed Bernoulli random 
variables with the probability of a 1 or -1 being chosen equal to ~. 

Our analysis focuses on learning algorithms. Before describing some dynamic learning 
algorithms we present some definitions. A network is defined as dynamic if given sorne 
period of time the rate of change of W is never nonzero. In addition we will primarily dis­
cuss networks where learning is gradual and updated at discrete times as shown in (2.2). 
By gradual, we want networks where each update usually consists of one IV being learned 
and/or forgotten. IVs that have been introduced recently should have a high probability of 
recovery. The probability of recall for one IV should also be a monotonic decreasing func­
tion of time, given that the IV is not repeated. The networks that we consider should also 
have a relatively low probability of network saturation. 

Quantitatively, we let e(k,l,i} be the event that an IV introduced at time l can be 
recovered at time k with a data probe vector which is of Hamming distance i f!'Om the 
desired IV. The efficacy of network recovery is then given as p(k,l,i) = Pr(e(k,l,i)). In 
the analysis performed we say a a vector V can recover V(I), if V(I) = 6(V) where 6(.) 
is a synchronous activation update of all cells in the network. The capacity for dynamic 
networks is then given by 

O(k,i,l) = maxm3-Pr(r(e(k,l,i),05:I<k)= m) > l-l O<i< N 
- 2 (2.3) 

where r(X} gives the cardinality of the number of events that occur in the set X. Closely 
related to the capacity of a network is network saturation. Saturation occurs when the 
network is overloaded with IVs such that few or none of the IVs can be successfully 
recovered. When a network at time 0 starts to leal'll IVs, at some time l < i we have that 
O(l,i,l» OU,i,l). For k>1 the network saturation probability is defined by S(k,m) 
where S describes the probability that the network cannot recover m IVs. 

Another important measure in analyzing the performance of dynamic networks is t.he 
plasticity of the interconnections of the weight matrix W. Following definitions that are 
similar to [10], define 

N 

2: 2: V AR{ Wi,j(k) - Wi,j(k-l)} 

h(k) = 
i". ii-I 

N(N-l) 
(2.4) 

as the incremental synaptic intensity and 
N 

2: 2:V AR{ Wi,j(k)} 

H(k) = 
i"..;;= 1 

N(N-l) 
(2 .5) 

as the cumulative synaptic intensity . From these definitions we can define the plasticity of 
the network as 

P(k) = h(k) 
H(k) 

(2.6) 

When network plasticity is zero, the network does not change and no learning takes place. 
When plasticity is high, the network interconnections exhibit large changes. 
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When analyzing dynamic networks we are often interested if the network reaches a 
steady state. We say a dynamic network reaches steady state if 

limH(k) = H 
Ie--.oo 

(2.7) 

where H is a finite nonzero constant. If the IVs have stationary statistics and given that 
the learning operations are time invariant, then if a network reaches steady state, we have 
that 

limP(k) = P 
Ie-+oo 

(2 .8) 

where P is a finite constant. It is also easily verified from (2.6) that if the plasticity con­
verges to a nonzero constant in a dynamic network, then given the above conditions on the 
IVs and the learning operations the network will eventually reach steady state. 

Let us also define the synaptic state at time k for activation state V as 

s(k, V) = W(k)V (2.9) 

From the synaptic state, we Can define the SNR of V, which we show III section 3 is 
closely related to the efficacy of an IV and the capacity of the network . 

(E(s.(k V)))2 
SNR(k, V,i) = ., 

VAR(si(k, V)) 
(2.1O) 

Another quantity that is important in measuring dynamic networks is the complexity 
of implementation. Quantities dealing with network complexity are discussed in [12] and 
this paper focuses on networks that are memory less. A network is memoryless if (2.2) can 
be expressed in the following form: 

W(k+ 1) = 9 #( W(k), V(k)) (2.11) 

Networks that are not memoryless have the disadvantage that all Ns need t.o be saved dur­
ing all learning updates. The complexity of implementation is greatly increased in terms of 
space complexity and very likely increased in terms of time complexity. 

2.2. Examples of Dynamic Associative Memory Networks 

The previous subsection discussed some quantities to measure dynamic networks. 
This subsection discusses some examples of dynamic associative memo!,y networks and 
qualitatively discusses advantages and disadvantages of different networks . All the net­
works considered have the memoryless propel·ty. 

The first network that we discuss is described by the following difference equation 

W(k+ 1) = a(k)W(k) + b(k)L(V(k)) (2.12) 

with W(O) being the initial value of weights before any learning has taken place . Networks 
with these learning rules will be labeled as Linear Updated Learning (LUL) networks and 
in addition if O<a(k)<l for k2::0 the network is labeled as an Attenuated Linear Updated 
Learning (ALUL) network. We will primarily deal with ALUL where O<a(k)<l and b(k) 
do not depend on the position in W. This model is a specialized version of Grossberg's 
Passive Decay LTM equation discussed in [11]. If the learning algorithm is of the conela­
tion type then 

L(V(J.·)) = V(k)V(kf-1 (2.13) 

This learning scheme has similarities to the marginalist learning schemes introduced in [10]. 
One of the key parameters in the ALUL network is the value of the attenuation coefficient 
a. From simulations and intuition we know that if the attenuation coefficient is to high, 
the network will saturate and if the attenuation parameter is to low, the network will 
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forget all but the most recently introduced IVs. Fig. 1 uses Monte Carlo methods to show 
a plot of the number of IVs recoverable in a 64 cell network when a = 1, (the HAMN) as a 
function of the learning time scale. From this figure we clearly see that network saturation 
is exhibited and for the time k ~ 25 no IV are recoverable with high probability. Section 3 
further analyzes the AL UL network and derives the value of different measUl'es introduced 
in section 2.1. 

Another learning scheme called bounded learning (BL) can be described by 

{V(k)V(k)T -I F(W(k)~A 
L(V(k)) = 0 

F( W(J.:))<A 
(2.14) 

By setting the attenuation parameter a = 1 and letting 

F(W(k)) = ~a;<Wi.i(k) (2 .15) 
I,J 

this is identical to the learning with bounds scheme discussed in [10]. Unfortunately there 
is a serious drawbacks to this model. If A is too large the network will saturate with high 
probability. If A is set such that the probability of network saturation is low then the net­
work has the characteristic of not learning for almost all values of 
k > k(A) = min I :7 F( W(I))~ A. Th~efore we have that the efficacy of netwOl'k 
recovery, p (k,1 ,0) ~ 0 for all J.: ~ I ~ k{A). 

In order for the (BL) scheme to be classified as dynamic learning, the attenuation 
parameter a must have values between 0 and 1. This learning scheme is just a more com­
plex version of the learning scheme derived from (2.10,2 .11). Let us qualitatively analyze 
the learning scheme when a and b are constant. There are two cases to consider. When 
A> H, then the network is not affected by the bounds and the network behaves as the 
AL UL network. When A <H, then the network accepts IVs until the bound is reached. 
When the bound is reached, the network waits until the values of the interconnection 
matrix have attenuated to the prescribed levels where learning can continue. If A is judi­
ciously chosen, BL with a < 1 provides a means for a network to avoid saturation. By 
holding an IV until H(k )<A, it is not too difficult to show that this learning scheme is 
equivalent to an AL UL network with b (k) time varying. 

A third learning scheme called refresh learning (RL) can be described by (2 .12) with 
b(k)=I, W(O)=O, and 

a(k) = 1 -.5(kmod(l)) (2.16) 

This learning scheme learns a set of IV and periodically refreshes the weighting matrix so 
that all interconnections are O. RL can be classified as dynamic learning, but learning is 
not gradual during the periodic l'efresh cycle. Another problem with this learning scheme is 
that the efficacy of the IVs depend on where during the period they were learned. IVs 
learned late in a period are quickly forgotten where as IVs learned eady in a period have a 
longer time in which they are recoverable. 

In all the learning schemes introduced, the network has both learning and forgetting 
capabilities, A network introduced in [7,8] separates the learning and forgetting tasks by 
using the standard HAMN algorithm to learn IV and a random selective forgetting algo­
rithm to unlearn excess information. The algorithm which we call random selective forget­
ting (RSF) can be described formally as follows. 

W(k+ 1) = Y(J.:) + L(V(k)) (2.17) 

where 

n(FU!::(k))) 
Y(k) = W(k) -Jl(k) 2..; (V(k,a')V(k,i)T -n(F(W(k)))I) (2.18) 

i= 1 
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Each of the vectors V( k, i) are obtained by choosing a random vector V in the same 
manner IVs are chosen and letting V be the initial state of the HAMN with interconnection 
matrix W(k). The recall operation described by (2.1) is repeated until the activation has 
settled into a local minimum state . V(k,i) is then assigned this state. /L(k) is the rate at 
which the randomly selected local minimum energy states are forgotten, W(k) is given by 
(2.15), and n (X) is a nonnegative integer valued function that is a monotonically increasing 
function of X. 

The analysis of the RSF algorithm is difficult, because the energy manifold that 
describes the energy of each activation state and the updates allowable for (2.1) must be 
well understood. There is a simple transformation between the weighting matrix and the 
energy of an activation state given below, 

E(X(k)) = -~~~Wi,jX;·(j)Xj(k) k>O 
i j 

(2 .19) 

but aggregately analyzing all local minimum energy activation states is complex. Through 
computer simulations and simplified assumptions [7,8] have come up with a qualitative 
explanation of the RSF algorithm based on an eigenvalue approach. 

3. Analysis of the ALUL Network 

Section 2 focused on defining properties and analytical measures for dynamic AMN 
along with presenting some examples of some learning algorithms for dynamic AMN. This 
section will focus on the analysis of one of the simpler algorithms, the ALUL network. 
From (2.12) we have that the time invariant ALUL network can be described by the fol­
lowing interconnection state equation. 

W(k+ 1) = aW(k) + bL(V(k)) (3.1 ) 

where a and b are nonnegative real numbers . Many of the measures introduced in section 
2 can easily be determined for the AL UL network. 

To calculate the incremental synaptic intensity h (k) and the cumulative synaptic 
intensity H(k) let the initial condition of the interconnection state W",i(O) be independent 
of all other interconnections states and independent of all IVs. If E W",i(O) = 0 and 
V AR W .. ,j(O) = "Y then 

(3.2) 

and 

(3.3) 

In steady state when a < 1 we have that 

p = 2(1~) (3.4) 

From this simple relationship between the attenuation parameter a and the plasticity 
measure P, we can directly relate plasticity to other measures such as the capacity of the 
network. 

We define the steady state capacity as C(i,i)= lim C(k,i,i) for networks where 
k--o.o 

steady state exists. To analytically determine the capacity first assume that 
S(k, V(j)) = S(k-i) is a jointly Gaussian random vector. Further assume that Si(l) for 
1~ i< N, 1~ 1< m are all independent and identically distributed. Then for N sufficiently 
large, f(a) = a2(k...,.-,l}(1~2), and 
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we have that 

SNR(k, VU)) = SNR(k-n = (N-l)f(a) 
I-f{a) 

= c{a )logN » 1 

p{k,j,O) = 

1~ 
~l _ N 2 

V21rC (a )logN 
j<k 

j<k (3.5) 

(3.6) 

Given a we first find the largest m= k-j>O where lim p(k,j,O) ~ 1. Note that 
N-oo 

~~p{k,j,O)= 1 when c(a»2. By letting c(a)= 2 the maximum m is given when 

Solving for m we get that 

f(a) 
I-f (a) = 

2logN 
N 

I [ 210gN 1 
og (N + 21ogN)(1-a2) 

m = 1 -.......::.-------~ + 1 
2 loga 

It is also possible to find the value of a that maximizes m. If we let f = 1 - a2, then 

(3.7) 

(3.8) 

I [ 2logN 1 
og (N+ 2logN)f 

m ~ (3.9) 
f 

. . I h 2elogN h NTh· d m IS at a maximum va ue w en f ~ or w en m ~ . IS correspon s to 
N 2elogN 

a ~ 2m -l. Note that this is a factor of e less than the maximum number of Ns allowable 
2m 

in a static HAMN [4,5], such that one of the Ns is recoverable. By following the analysis 
in [5], the independence assumption and the Gaussian assumptions used earlier can be 
removed. The arguments involve using results from exchangeability theory and normal 
approximation theory. 

A similar and somewhat more cumbersome analysis can be performed to show that in 

steady state the maximum capacity achievable is when a ~ 2m -l and given by 
2m 

lim C(k,O,f) = ~ N 
N-oo 4e og 

(3.10) 

This again is a factor of e less than the maximum number of Ns allowable in a static 
HAMN [4,5]' such that all Ns are recoverable. Fig. 2 shows a Monte Carlo simulation of 
the number of Ns recoverable in a 64 cell network versus the learning time scale for a 
varying between .5 and .99. We can see that the network reaches approximate steady state 
when k:2: 35. The maximum capacity achievable is when a ~ .9 and the capacity is around 
5. This is slightly more than the theoretical value predicted by the analysis just shown 
when we compare to Fig. 1. For smaller simulations conducted with larger networks the 
simulated capacity was closer to the predicted value. From the simulations and the 
analysis we observe that when a is too small Ns are forgotten at too high a rate and when 
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a is too high network saturation occurs. 

Using the same arguments, it is possible to analyze the capacity of the network and 

efficacy of rvs when k is small. Assuming zero initial conditions and a ~ 2m-l we can 
2m 

summarize the learning behavior of the AL UL network. The learning behavior can be 

divided into three phases. In the first phase for k< N all Ns are remembered and 
- 4elogN 

the characteristics of the network are similar to the HAMN below saturation. In the 
second phase some rvs are forgotten as the rate of forgetting becomes nonzero. During this 
phase the maximum capacity is reached as shown in fig . 2. At this capacity the network 
cannot dynamically recall all IVs so the network starts to forget more information then it 
receives. This continues until steady state is reached where the learning and forgetting 
rates are equal. If initial conditions are nonzero the network starts in phase 1 or the begin­
ning of phase 2 if H( k) is below the value corresponding to the maximum capacity and at 
the end of phase 2 for larger H( k). 

The calculation of the network saturation probabilities S( k, m) is trivial for large net­
works when the capacity curves have been found. When m~ C(k,O,E) then S(k,m) ~ 0 
otherwise S(k ,m) ~ 1. 

Before leaving this section let us briefly examine AL UL networks where a (k) and 
b (k) are time varying. An example of a time varying network is the marginalist learning 
scheme introduced in [10]. The network is defined by fixing the value of the 
SNR(k,k-l,i) = D(N) for all k. This value is fixed by setting a= 1 and varying b. Since 
the VARSi(k,V(k-l)) is a monotonic increasing function of k, b(k) must also be a mono­
tonic increasing function of k. It is not too difficult to show that when k is large, the mar­
ginalist learning scheme is equivalent to the steady state AL UL defined by (3.1). The argu­
ment is based on noting that the steady state SNR depends not on the update time, but 
on the difference between the update time and when the rv was stored as is the case with 
the marginalist learning scheme. The optimal value of D( N) giving the highest capacity is 
when D(N) = 4elogN and 

where m = 
4elogN' 

N 

b(k+ 1) = 2m b(k) 
2m-l 

If performance is defined by a worst case criterion with the criterion being 

J(I,N) = min(C(k,O,E),k~/) 

(3.11) 

(3.12) 

then we conjecture that for I large, no AL UL as defined in (2.12,2.13) can have larger 
J(I,N) than the optimal ALUL defined by (3.1). If we consider average capacity, we note 

that the RL network has an average capacity of N which is larger than the optimal 
810gN 

AL UL network defined in (3.1). However, for most envisioned applications a worst case 
criterion is a more accurate measure of performance than a criterion based on average 
capacity. 

4. Summary 

This paper has introduced a number of simple dynamic neural network models and 
defined several measures to evaluate the performance of these models. All parameters for 
the steady state AL UL network described by (3.1) were evaluated and the attenuation 
parameter a giving the largest capacity was found. This capacity was found to be a factor 
of e less than the static HANIN capacity. Furthermore we conjectured that if we consider 
a worst case performance criteria that no AL UL network could perform better than the 
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optimal ALUL network defined by (3.1). Finally, a number of other dynamic models 
including BL, RL, and marginalist learning were stated to be equivalent to AL UL networks 
under certain conditions. 

The network models that were considered in this paper all have binary vector valued 
activation states and may be to simplistic to be considered in many signal processing appli­
cation. By generalizing the analysis to more complicated models with analog vector valued 
activation states and continuous time updating it may be possible to use these generalized 
models in speech and image processing. A specific example would be a controller for a 
moving robot. The generalized network models would learn the input data by adaptively 
changing the interconnections of the network. Old data would be forgotten and data that 
was repeatedly being recalled would be reinforced. These network models could also be 
used when the input data statistics are nonstationary. 
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