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Abstract: 

We propose that the back propagation algorithm for super­

vised learning can be generalized, put on a satisfactory conceptual 

footing, and very likely made more efficient by defining the val­

ues of the output and input neurons as probabilities and varying 

the synaptic weights in the gradient direction of the log likelihood, 

rather than the 'error'. 

In the past thirty years many researchers have studied the 

question of supervised learning in 'neural'-like networks. Recently 

a learning algorithm called 'back propagation H - 4 or the 'general­

ized delta-rule' has been applied to numerous problems including 

the mapping of text to phonemes5 , the diagnosis of illnesses6 and 

the classification of sonar targets 7 • In these applications, it would 

often be natural to consider imperfect, or probabilistic informa­

tion. We believe that by considering supervised learning from this 

slightly larger perspective, one can not only place back propaga-
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tion on a more rigorous and general basis, relating it to other well 

studied pattern recognition algorithms, but very likely improve its 

performance as well. 

The problem of supervised learning is to model some mapping 

between input vectors and output vectors presented to us by some 

real world phenomena. To be specific, coqsider the question of 

medical diagnosis. The input vector corresponds to the symptoms 

of the patient; the i-th component is defined to be 1 if symptom i 

is present and 0 if symptom i is absent. The output vector corre­

sponds to the illnesses, so that its j-th component is 1 if the j-th 

illness is present and 0 otherwise. Given a data base consisting 

of a number of diagnosed cases, the goal is to construct (learn) a 

mapping which accounts for these examples and can be applied to 

diagnose new patients in a reliable way. One could hope, for in­

stance, that such a learning algorithm might yield an expert system 

to simulate the performance of doctors. Little expert advice would 

be required for its design, which is advantageous both because ex­

perts' time is valuable and because experts often have extraodinary 

difficulty in describing how they make decisions. 

A feedforward neural network implements such a mapping be­

tween input vectors and output vectors. Such a network has a set 

of input nodes, one or several layers of intermediate nodes, and a 

layer of output nodes. The nodes are connected in a forward di­

rected manner, so that the output of a node may be connected to 

the inputs of nodes in subsequent layers, but closed loops do not 

occur. See figure 1. The output of each node is assumed to be a 

bounded semilinear function of its inputs. That is, if Vj denotes 

the output of the j-th node and Wij denotes the weight associated 

with the connection of the output of the j-th node to the input of 
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the i-th, then the i-th neuron takes value Vi = g(L,i Wi:jV:j), where 

g is a bounded, differentiable function called the activation func­

tion. g(x) = 1/(1 + e- X ), called the logistic function, is frequently 

used. Given a fixed set of weights {Wi:j}, we set the input node 

values to equal some input vector, compute the value of the nodes 

layer by layer until we compute the output nodes, and so generate 

an output vector. 

Figure 1: A 5 layer network. Note bottleneck at layer 3. 
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Such networks have been studied because of analogies to neu­

robiology, because it may be easy to fabricate them in hardware, 

and because learning algorithms such as the Perceptron learning 

algorithm8 , Widrow- Hoff9, and backpropagation have been able 

to choose weights Wi,. that solve interesting problems. 

Given a set of input vectors sr, together with associated target 

values tj, back propagation attempts to adjust the weights so as 

to minimize the error E in achieving these target values, defined as 

E = E EJL = E(tj - oj)2 (1) 
JL JL,i 

where oj is the output of the j-th node when sJL is presented as 

input. Back propagation starts with randomly chosen Wi,. and 

then varies in the gradient direction of E until a local minimum 

is obtained. Although only a locally optimal set of weights is ob­

tained, in a number of experiments the neural net so generated 

has performed surprisingly well not only on the training set but on 

subsequent data.4 - 6 This performance is probably the main reason 

for widespread interest in backpropagation. 

It seems to us natural, in the context of the medical diagnosis 

pro blem, the other real world problems to which backpropagation 

has been applied, and indeed in any mapping problem where one 

desires to generalize from a limited and noisy set of examples, to 

interpret the output vector in probabilistic terms. Such an inter­

pretation is standard in the literature on pattern classification. 1o 

Indeed, the examples might even be probabilistic themselves. That 

is to say it might not be certain whether symptom i was present 

in case /L or not. 

Let sr represent the probability symptom i is present in case 

/L, and let tj represent the probability disease j ocurred in case 
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fL. Consider for the moment the case where the tJ are 1 or 0, 
A 

so that the cases are in fact fully diagnosed. Let Ii (s, 0) be our 

prediction of the probability of disease i given input vector 5, where 

{; is some set of parameters determined by our learning algorithm. 

In the neural network case, the {; are the connection weights and 

Ii ( sl' , { Wi.i }) = oJ. 

Now lacking a priori knowledge of good 0, the best one can do 

is to choose the parameters {; to maximize the likelihood that the 

given set of examples should have occurred. 10 The formula for this 

likelihood, p, is immediate: 

or 

The extension of equation (2), and thus equation (3) to the 

case where the f are probabilities, taking values in [0,1]' is straight-
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forward * 1 and yields 

log(p) = ~ [tjlog(Jj (s", 0)) + (1 - tj)log(1 - Ij (W, 0))] (4) 
p. ,3 

Expressions of this sort often arise in physics and information the­

ory and are generally interpreted as an entropy. 11 

We may now vary the {O} in the gradient direction of the en­

tropy. The back propagation algorithm generalizes immediately 

from minimizing 'Error' or 'Energy' to maximizing entropy or log 

likelihood, or indeed any other function of the outputs and the 

inputs 12 . Of course it remains true that the gradient can be com­

puted by back propagation with essentially the same number of 

computations as are required to compute the output of the net­

work. 

A backpropagation algorithm based on log-likelihood is not 

only more intuitively appealing than one based on an ad-hoc def­

inition of error, but will make quite different and more accurate 

predictions as well. Consider e.g. training the net on an exam­

ple which it already understands fairly well. Say tj = 0, and 

/j(80) = L Now, from eqn(l) BE/B/j = 2£, so using 'Error' as a 

* 1 We may see this by constructing an equivalent larger set of 

examples with the f taking only values 0 or 1 with the appropriate 

frequency. Thus assume the tj are rational numbers with denomi­

nator dj and numerator nj and let p = IIp.,j dj. What we mean by 

the set of examples {tp. : J-t = 1, ... , M} can be represented by con­

sidering a set of N = Mp examples {ij} where for each J-t, ij = 0 

for p(J-t- 1) < v < pJ-t and 1 < vmod(dj) < (dj - nj), and ij = 1 

otherwise. N ow applying equation (3) gives equation (4), up to an 

overall normalization. 
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criterion the net learns very little from this example, whereas, us­

ing eqn(3), Blog(p)/B!;j = 1/(1 - f), so the net continues to learn 

and can in fact converge to predict probabilities near 1. Indeed 

because back propagation using the standard 'Error' measure can 

not converge to generate outputs of 1 or 0, it has been custom­

ary in the literature4 to round the target values so that a target 

of 1 would be presented in the learning algorithm as some ad hoc 

number such as .8, whereas a target of 0 would be presented as .2. 

In the context of our general discussion it is natural to ask 

whether using a feedforward network and varying the weights is in 

fact the most effective alternative. Anderson and Abrahams 13 have 

discussed this issue from a Bayesian viewpoint. From this point of 

view, fitting output to input using normal distributions and varying 

the means and covariance matrix may seem to be more logical. 

Feedforward networks do however have several advantages for 

complex problems. Experience with neural networks has shown the 

importance of including hidden units wherein the network can form 

an internal representation of the world. If one simply uses normal 

distributions, any hidden variables included will simply integrate 

out in calculating an output. It will thus be necessary to include at 

least third order correlations to implement useful hidden variables. 

Unfortunately, the number of possible third order correlations is 

very large, so that there may be practical obstacles to such an 

approach. Indeed it is well known folklore in curve fitting and 

pattern classification that the number of parameters must be small 

compared to the size of the data set if any generalization to future 

cases is expected. 10 

In feedforward nets the question takes a different form. There 

can be bottlenecks to information flow. Specifically, if the net is 
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constructed with an intermediate layer which is not bypassed by 

any connections (i.e. there are no connections from layers preceding 

to layers subsequent), and if furthermore the activation functions 

are chosen so that the values of each of the intermediate nodes 

tend towards either 1 or 0*2, then this layer serves as a bottleneck 

to information flow. No matter how many input nodes, output 

nodes, or free parameters there are in the net, the output will be 

constrained to take on no more than 21 different patterns, where 

I is the number of nodes in the bottleneck layer. Thus if I is 

small, some sort of 'generalization' must occur even if the number 

of weights is large. One plausible reason for the success of back 

propagation in adequately solving tasks, in spite of the fact that 

it finds only local minima, is its ability to vary a large number of 

parameters. This freedom may allow back propagation to escape 

from many putative traps and to find an acceptable solution. 

A good expert system, say for medical diagnosis, should not 

only give a diagnosis based on the available information, but should 

be able to suggest, in questionable cases, which lab tests might be 

performed to clarify matters. Actually back propagation inher­

ently has such a capability. Back propagation involves calculation 

of 81og(p)/8wij. This information allows one to compute immedi­

ately 81og(p)/8sj . Those input nodes for which this partial deriva­

tive is large correspond to important experiments. 

In conclusion, we propose that back propagation can be gen­

eralized, put on a satisfactory conceptual footing, and very likely 

made more efficient, by defining the values of the output and in-

*2 Alternatively when necessary this can be enforced by adding 

an energy term to the log-likelihood to constrain the parameter 

variation so that the neuronal values are near either 1 or O. 
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put neurons as probabilities, and replacing the 'Error' by the log­

likelihood. 
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