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ABSTRACT 

Recognizing patterns with temporal context is important for 

such tasks as speech recognition, motion detection and signature 

verification. We propose an architecture in which time serves as its 

own representation, and temporal context is encoded in the state of the 

nodes. We contrast this with the approach of replicating portions of the 

architecture to represent time. 

As one example of these ideas, we demonstrate an architecture 

with capacitive inputs serving as temporal feature detectors in an 

otherwise standard back propagation model. Experiments involving 

motion detection and word discrimination serve to illustrate novel 

features of the system. Finally, we discuss possible extensions of the 

architecture. 

INTRODUCTION 

Recent interest in connectionist, or "neural" networks has emphasized their 

ability to store, retrieve and process patterns1,2. For most applications, the patterns to 

be processed are static in the sense that they lack temporal context. 

Another important class consists of those problems that require the processing 

of temporal patterns. In these the information to be learned or processed is not a 

particular pattern but a sequence of patterns. Such problems include speech 

processing, signature verification, motion detection, and predictive signal 

processin,r-8. 

More precisely, temporal pattern processing means that the desired output 

depends not only on the current input but also on those preceding or following it as 

well. This implies that two identical inputs at different time steps might yield 

different desired outputs depending on what patterns precede or follow them. 

There is another feature characteristic of much temporal pattern processing. 

Here an entire sequence of patterns is recognized as a single distinct category, 
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generating a single output. A typical example of this would be the need to recognize 

words from a rapidly sampled acoustic signal. One should respond only once to the 

appearance of each word, even though the word consists of many samples. Thus, each 

input may not produce an output. 

With these features in mind, there are at least three additional issues which 

networks that process temporal patterns must address, above and beyond those that 

work with static patterns. The first is how to represent temporal context in the state of 

the network. The second is how to train at intermediate time steps before a temporal 

pattern is complete. The third issue is how to interpret the outputs during recognition, 

that is, how to tell when the sequence has been completed. Solutions to each of these 

issues require the construction of appropriate input and output representations. This 

paper is an attempt to address these issues, particularly the issue of representing 

temporal context in the state of the machine. We note in passing that the recognition 

of temporal sequences is distinct from the related problem of generating a sequence, 

given its first few members9.lO•11 . 

TEMPORAL CLASSIFICATION 

With some exceptions10.12, in most previous work on temporal problems the 

systems record the temporal pattern by replicating part of the architecture for each 

time step. In some instances input nodes and their associated links are replicated3,4. In 

other cases only the weights or links are replicated, once for each of several time 

delays 7,8. In either case, this amounts to mapping the temporal pattern into a spatial 

one of much higher dimension before processing. 

These systems have generated significant and encouraging results. However, 

these approaches also have inherent drawbacks. First, by replicating portions of the 

architecture for each time step the amount of redundant computation is significantly 

increased. This problem becomes extreme when the signal is sampled very 

frequently4. :-.l' ext, by re lying on replications of the architecture for each time step, the 

system is quite inflexible to variations in the rate at which the data is presented or size 

of the temporal window. Any variability in the rate of the input signal can generate an 

input pattern which bears little or no resemblance to the trained pattern. Such 

variability is an important issue, for example, in speech recognition . Moreover, having 

a temporal window of any fixed length makes it manifestly impossible to detect 

contextual effects on time scales longer than the window size. An additional difficulty 

is that a misaligned signal, in its spatial representation, may have very little 

resemblance to the correctly aligned training signal. That is, these systems typically 

suffer from not being translationally invariant in time. 

~etworks based on relaxation to equilibrium 11,13,14 also have difficulties for 

use with temporal problems. Such an approach removes any dependence on initial 
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conditions and hence is difficult to reconcile directly with temporal problems, which by 

their nature depend on inputs from earlier times. Also, if a temporal problem is to be 

handled in terms of relaxation to equilibrium, the equilibrium points themselves must 

be changing in time. 

A NON·REPLICATED, DYNAMIC ARCHITECTURE 

We believe that many of the difficulties mentioned above are tied to the 

attempt to map an inherently dynamical problem into a static problem of higher 

dimension. As an alternative, we propose to represent the history of the inputs in the 

state of the nodes of a system, rather than by adding additional units. Such an 

approach to capturing temporal context shows some very immediate advantages over 

the systems mentioned above . F'irst, it requires no replication of units for each distinct 

time step. Second, it does not fix in the architecture itself the window for temporal 

context or the presentation rate. These advantages are a direct result of the decision to 

let time serve as its own representation for temporal sequences, rather than creating 

additional spatial dimensions to represent time. 

In addition to providing a solution to the above problems, this system lends 

itself naturally to interpretation as an evolving dynamical system. Our approach 

allows one to think of the process of mapping an evolving input into a discrete 

sequence of outputs (such as mapping continuous speech input into a sequence of 

words) as a dynamical system moving from one attractor to another15. 

As a preliminary example of the application of these ideas, we introduce a 

system that captures the temporal context of input patterns without replicating units 

for each time step. We modify the conventional back propagation algorithm by making 

the input units capacitive. In contrast to the conventional architecture in which the 

input nodes are used simply to distribute the signal to the next layer, our system 

performs an additional computation. Specifically, let Xi be the value computed by an 

input node at time ti ' and Ii be the input signal to this node at the same time. Then the 

node computes successive values according to 

(1) 

where a is an input amplitude and d is a decay rate. Thus, the result computed by an 

input unit is the sum of the current input value multiplied by a, plus a fractional part, 

d, of the previously computed value of the input unit. In the absence of further input, 

this produces an exponential decay in the activation of the input nodes. The value for d 
is chosen so that this decay reaches lie of its original value in a time t characteristic of 

the time scale for the particular problem, i.e., d=e'tr, where r is the presentation rate. 

The value for a is chosen to produce a specified maximum value for X, given by 



alma/(1-d) . We note that Eq. (1) is equivalent to having a non-modifiable recurrent 

link with weight d on the input nodes, as illustrated in Fig. l. 

o 0 

Fig. 1: Schematic architecture with capacitive inputs . The input nodes 
compute values according to Eq. (1). Hidden and output units are 
identical to standard back propagation nets. 

The processing which takes place at the input node can also be thought of in 

terms of an infinite impulse response (IIR) digital filter. The infinite impulse response 

of the filter allows input from the arbitrarily distant past to influence the current 

output of the filter, in contrast to methods which employ fixed windows, which can be 
viewed in terms of finite impulse response (FIR) filters. The capacitive node of Fig. 1 is 

equivalent to pre-processing the signal with a filter with transfer function a/(1-dz· 1) . 

This system has the unique feature that a simple transformation of the 

parameters a and d allows it to respond in a near-optimal way to a signal which differs 

from the training signal in its rate. Consider a system initially trained at rate r with 

decay rate d and amplitude a. To make use of these weights for a different presentation 

rate, r~ one simply adjusts the values a 'and d'according to 

d' = d r/r' 

1 - d' 
a' = a ""[:"d 

(2) 

(3) 
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These equations can be derived by the following argument. The general idea is 

that the values computed by the input nodes at the new rate should be as close as 

possible to those computed at the original rate. Specifically, suppose one wishes to 

change the sampling rate from r to nr, where n is an integer. Suppose that at a time to 

the computed value of the input node is Xo ' If this node receives no additional input, 

then after m time steps, the computed value of the input node will be Xodm . For the 

more rapid sampling rate, Xodm should be the value obtained after nm time steps. 

Thus we require 

(4) 

which leads to Eq. (2) because n= r7r. Now suppose that an input I is presented m 

times in succession to an input node that is initially zero. After the mth presentation, 

the computed value of the input node is 

(5) 

Requiring this value to be equal to the corresponding value for the faster presentation 

rate after nm time steps leads to Eq. (3). These equations, then, make the computed 

values of the input nodes identical, independent of the presentation rate . Of course, 

this statement only holds exactly in the limit that the computed values of the input 

nodes change only infinitesimally from one time step to the next. Thus, in practice, one 

must insure that the signal is sampled frequently enough that the computed value of 

the input nodes is slowly changing. 

The point in weight space obtained after initial training at the rate r has two 

desirable properties. First, it can be trained on a signal at one sampling rate and then 

the values of the weights arrived at can be used as a near-optimal starting point to 

further train the system on the same signal but at a different sampling rate. 

Alternatively, the system can respond to temporal patterns which differ in rate from 

the training signal, without any retraining of the weights. These factors are a result of 

the choice of input representation, which essentially present the same pattern to the 

hidden unit and other layers, independent of sampling rate. These features highlight 

the fact that in this system the weights to some degree represent the temporal pattern 

independent of the rate of presentation. In contrast, in systems which use temporal 

windows, the weights obtained after training on a signal at one sampling rate would 

have little or no relation to the desired values of the weights for a differen.t sampling 

rate or window size. 



EXPERIMENTS 

As an illustration of this architecture and related algorithm, a three-layer, 

15-30-2 system was trained to detect the leftward or rightward motion of a gaussian 

pulse moving across the field of input units with sudden changes in direction. The 

values of d and a were 0.7788 and 0.4424, respectively. These values were chosen to 

give a characteristic decay time of 4 time steps with a maximum value computed by 

the input nodes of 2.0 . The pulse was of unit height with a half-width, 0, of 1.3. Figure 

2 shows the input pulse as well as the values computed by the input nodes for leftward 

or rightward motion. Once trained at a velocity of 0.1 unit per sampling time, the 

velocity was varied over a wide range, from a factor of2 slower to a factor of2 faster as 

shown in Fig. 3. For small variations in velocity the system continued to correctly 
identify the type of motion. More impressive was its performance when the scaling 

relations given in Eqs. (2) and (3) were used to modify the amplitude and decay rate . In 

this case, acceptable performance was achieved over the entire range of velocities 

tested. This was without any additional retraining at the new rates. The difference in 

performance between the two curves also demonstrates that the excellent performance 

of the system is not an anomaly of the particular problem chosen, but characteristic of 

rescaling a and d according to Eqs. (2) and (3). We thus see that a simple use of 

capacitive links to store temporal context allows for motion detection at variable 

velocities. 

A second experiment involving speech data was performed to compare the 

system's performance to the time-delay-neural-network of Watrous and Shastri 8. In 

their work, they trained a system to discriminate between suitably processed acoustic 
signals of the words "no" and "go." Once trained on a single utterance, the system was 

able to correctly identify other samples of these words from the same speaker. One 

drawback of their approach was that the weights did not converge to a fixed point. We 

were therefore particularly interested in whether our system could converge smoothly 

and rapidly to a stable solution, using the same data, and yet generalize as well as 

theirs did. This experiment also provided an opportunity to test a solution to the 

intermediate step training problem. 

The architecture was a 16-30-2 network. Each of the input nodes received an 

input signal corresponding to the energy (sampled every 2.5 milliseconds) as a 

function of time in one of 16 frequency channels. The input values were normalized to 

lie in the range 0.0 to 1.0. The values of d and a were 0.9944 and 0.022, respectively. 

These values were chosen to give a characteristic decay time comparable to the length 

of each word (they were nearly the same length), and a maximum value computed by 

the input nodes of 4.0. For an input signal that was part of the word "no", the training 

signal was (t.O, 0.0), while for the word "go" it was (0.0, 1.0). Thus the outputs that 

were compared to the training signal can be interpreted as evidence for one word or the 

other at each time step. The error shown in Fig. 4 is the sum of the squares of the 
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difference between the desired outputs and the computed outputs for each time step, 

for both words, after training up to the number ofiterations indicated along the x-axis. 

2 

2 

a) input wavepacket 

3 4 

b) rightward 
motion 

3 4 

c) leftward 
motion 
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Fig. 2: a) Packet presented to input nodes. The x-axis represents the 
input nodes. b) Computed values from input nodes during rightward 
motion. c) Computed values during leftward motion. 
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Fig. 3: Performance of motion detection experiment for various 
velocities. Dashed curve is performance without scaling and solid 
curve is with the scaling given in Eqs. (2) and (3). 
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Fig. 4: Error in no/go discrimination as a function of the number of 
training iterations. 

Evidence for each word was obtained by summing the values of the respective 

nodes over time. This suggests a mechanism for signaling the completion of a 

sequence: when this sum crosses a certain threshold value, the sequence (in this case, 

the word) is considered recognized. Moreover, it may be possible to extend this 

mechanism to apply to the case of connected speech: after a word is recognized, the 

sums could be reset to zero, and the input nodes reinitialized. 

Once we had trained the system on a single utterance, we tested the 

perfor~ance of the resulting weights on additional utterances of the same speaker. 
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Preliminary results indicate an ability to correctly discriminate between "no" and 

"go." This suggests that the system has at least a limited ability to generalize in this 

task domain. 

DISCUSSION 

At a more general level, this paper raises and addresses some issues of 

representation. By choosing input and output representations in a particular way, we 

are able to make a static optimizer work on a temporal problem while still allowing 

time to serve as its own representation. In this broader context, one realizes that the 

choice of capacitive inputs for the input nodes was only one among many possible 

temporal feature detectors. 

Other possibilities include refractory units, derivative units and delayed spike 

units. Refractory units would compute a value which was some fraction of the current 

input. The fraction would decrease the more frequently and recently the node had been 

"on" in the recent past. A derivative unit would have a larger output the more rapidly 

a signal changed from one time step to the next. A delayed spike unit might have a 

transfer function of the form Itne-at, where t is the time since the presentation of the 

signal. This is similar to the function used by Tank and Hopfield7, but here it could 

serve a different purpose. The maximum value that a given input generated would be 

delayed by a certain amount of time. By similarly delaying the training signal, the 

system could be trained to recognize a given input in the context of signals not only 

preceding but also following it. An important point to note is that the transfer 

functions of each of these proposed temporal feature detectors could be rescaled in a 

manner similar to the capacitive nodes. This would preserve the property of the system 

that the weights contain information about the temporal sequence to some degree 

independent of the sampling rate. 

An even more ambitious possibility would be to have the system train the 

parameters, such as d in the capacitive node case. It may be feasible to do this in the 

same way that weights are trained, namely by taking the partial of the computed error 

with respect to the parameter in question. Such a system may be able to determine the 

relevant time scales of a temporal signal and adapt accordingly. 
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