
750

A DYNAMICAL APPROACH TO TEMPORAL PATTERN
PROCESSING

W. Scott Stornetta

Stanford University, Physics Department, Stanford, Ca., 94305

Tad Hogg and B. A. Huberman

Xerox Palo Alto Research Center, Palo Alto, Ca. 94304

ABSTRACT

Recognizing patterns with temporal context is important for

such tasks as speech recognition, motion detection and signature

verification. We propose an architecture in which time serves as its

own representation, and temporal context is encoded in the state of the

nodes. We contrast this with the approach of replicating portions of the

architecture to represent time.

As one example of these ideas, we demonstrate an architecture

with capacitive inputs serving as temporal feature detectors in an

otherwise standard back propagation model. Experiments involving

motion detection and word discrimination serve to illustrate novel

features of the system. Finally, we discuss possible extensions of the

architecture.

INTRODUCTION

Recent interest in connectionist, or "neural" networks has emphasized their

ability to store, retrieve and process patterns1,2. For most applications, the patterns to

be processed are static in the sense that they lack temporal context.

Another important class consists of those problems that require the processing

of temporal patterns. In these the information to be learned or processed is not a

particular pattern but a sequence of patterns. Such problems include speech

processing, signature verification, motion detection, and predictive signal

processin,r-8.

More precisely, temporal pattern processing means that the desired output

depends not only on the current input but also on those preceding or following it as

well. This implies that two identical inputs at different time steps might yield

different desired outputs depending on what patterns precede or follow them.

There is another feature characteristic of much temporal pattern processing.

Here an entire sequence of patterns is recognized as a single distinct category,

© American Institute of Physics 1988

generating a single output. A typical example of this would be the need to recognize

words from a rapidly sampled acoustic signal. One should respond only once to the

appearance of each word, even though the word consists of many samples. Thus, each

input may not produce an output.

With these features in mind, there are at least three additional issues which

networks that process temporal patterns must address, above and beyond those that

work with static patterns. The first is how to represent temporal context in the state of

the network. The second is how to train at intermediate time steps before a temporal

pattern is complete. The third issue is how to interpret the outputs during recognition,

that is, how to tell when the sequence has been completed. Solutions to each of these

issues require the construction of appropriate input and output representations. This

paper is an attempt to address these issues, particularly the issue of representing

temporal context in the state of the machine. We note in passing that the recognition

of temporal sequences is distinct from the related problem of generating a sequence,

given its first few members9.lO•11 .

TEMPORAL CLASSIFICATION

With some exceptions10.12, in most previous work on temporal problems the

systems record the temporal pattern by replicating part of the architecture for each

time step. In some instances input nodes and their associated links are replicated3,4. In

other cases only the weights or links are replicated, once for each of several time

delays 7,8. In either case, this amounts to mapping the temporal pattern into a spatial

one of much higher dimension before processing.

These systems have generated significant and encouraging results. However,

these approaches also have inherent drawbacks. First, by replicating portions of the

architecture for each time step the amount of redundant computation is significantly

increased. This problem becomes extreme when the signal is sampled very

frequently4. :-.l' ext, by re lying on replications of the architecture for each time step, the

system is quite inflexible to variations in the rate at which the data is presented or size

of the temporal window. Any variability in the rate of the input signal can generate an

input pattern which bears little or no resemblance to the trained pattern. Such

variability is an important issue, for example, in speech recognition . Moreover, having

a temporal window of any fixed length makes it manifestly impossible to detect

contextual effects on time scales longer than the window size. An additional difficulty

is that a misaligned signal, in its spatial representation, may have very little

resemblance to the correctly aligned training signal. That is, these systems typically

suffer from not being translationally invariant in time.

~etworks based on relaxation to equilibrium 11,13,14 also have difficulties for

use with temporal problems. Such an approach removes any dependence on initial

751

752

conditions and hence is difficult to reconcile directly with temporal problems, which by

their nature depend on inputs from earlier times. Also, if a temporal problem is to be

handled in terms of relaxation to equilibrium, the equilibrium points themselves must

be changing in time.

A NON·REPLICATED, DYNAMIC ARCHITECTURE

We believe that many of the difficulties mentioned above are tied to the

attempt to map an inherently dynamical problem into a static problem of higher

dimension. As an alternative, we propose to represent the history of the inputs in the

state of the nodes of a system, rather than by adding additional units. Such an

approach to capturing temporal context shows some very immediate advantages over

the systems mentioned above . F'irst, it requires no replication of units for each distinct

time step. Second, it does not fix in the architecture itself the window for temporal

context or the presentation rate. These advantages are a direct result of the decision to

let time serve as its own representation for temporal sequences, rather than creating

additional spatial dimensions to represent time.

In addition to providing a solution to the above problems, this system lends

itself naturally to interpretation as an evolving dynamical system. Our approach

allows one to think of the process of mapping an evolving input into a discrete

sequence of outputs (such as mapping continuous speech input into a sequence of

words) as a dynamical system moving from one attractor to another15.

As a preliminary example of the application of these ideas, we introduce a

system that captures the temporal context of input patterns without replicating units

for each time step. We modify the conventional back propagation algorithm by making

the input units capacitive. In contrast to the conventional architecture in which the

input nodes are used simply to distribute the signal to the next layer, our system

performs an additional computation. Specifically, let Xi be the value computed by an

input node at time ti ' and Ii be the input signal to this node at the same time. Then the

node computes successive values according to

(1)

where a is an input amplitude and d is a decay rate. Thus, the result computed by an

input unit is the sum of the current input value multiplied by a, plus a fractional part,

d, of the previously computed value of the input unit. In the absence of further input,

this produces an exponential decay in the activation of the input nodes. The value for d
is chosen so that this decay reaches lie of its original value in a time t characteristic of

the time scale for the particular problem, i.e., d=e'tr, where r is the presentation rate.

The value for a is chosen to produce a specified maximum value for X, given by

alma/(1-d) . We note that Eq. (1) is equivalent to having a non-modifiable recurrent

link with weight d on the input nodes, as illustrated in Fig. l.

o 0

Fig. 1: Schematic architecture with capacitive inputs . The input nodes
compute values according to Eq. (1). Hidden and output units are
identical to standard back propagation nets.

The processing which takes place at the input node can also be thought of in

terms of an infinite impulse response (IIR) digital filter. The infinite impulse response

of the filter allows input from the arbitrarily distant past to influence the current

output of the filter, in contrast to methods which employ fixed windows, which can be
viewed in terms of finite impulse response (FIR) filters. The capacitive node of Fig. 1 is

equivalent to pre-processing the signal with a filter with transfer function a/(1-dz· 1) .

This system has the unique feature that a simple transformation of the

parameters a and d allows it to respond in a near-optimal way to a signal which differs

from the training signal in its rate. Consider a system initially trained at rate r with

decay rate d and amplitude a. To make use of these weights for a different presentation

rate, r~ one simply adjusts the values a 'and d'according to

d' = d r/r'

1 - d'
a' = a ""[:"d

(2)

(3)

753

754

These equations can be derived by the following argument. The general idea is

that the values computed by the input nodes at the new rate should be as close as

possible to those computed at the original rate. Specifically, suppose one wishes to

change the sampling rate from r to nr, where n is an integer. Suppose that at a time to

the computed value of the input node is Xo ' If this node receives no additional input,

then after m time steps, the computed value of the input node will be Xodm . For the

more rapid sampling rate, Xodm should be the value obtained after nm time steps.

Thus we require

(4)

which leads to Eq. (2) because n= r7r. Now suppose that an input I is presented m

times in succession to an input node that is initially zero. After the mth presentation,

the computed value of the input node is

(5)

Requiring this value to be equal to the corresponding value for the faster presentation

rate after nm time steps leads to Eq. (3). These equations, then, make the computed

values of the input nodes identical, independent of the presentation rate . Of course,

this statement only holds exactly in the limit that the computed values of the input

nodes change only infinitesimally from one time step to the next. Thus, in practice, one

must insure that the signal is sampled frequently enough that the computed value of

the input nodes is slowly changing.

The point in weight space obtained after initial training at the rate r has two

desirable properties. First, it can be trained on a signal at one sampling rate and then

the values of the weights arrived at can be used as a near-optimal starting point to

further train the system on the same signal but at a different sampling rate.

Alternatively, the system can respond to temporal patterns which differ in rate from

the training signal, without any retraining of the weights. These factors are a result of

the choice of input representation, which essentially present the same pattern to the

hidden unit and other layers, independent of sampling rate. These features highlight

the fact that in this system the weights to some degree represent the temporal pattern

independent of the rate of presentation. In contrast, in systems which use temporal

windows, the weights obtained after training on a signal at one sampling rate would

have little or no relation to the desired values of the weights for a differen.t sampling

rate or window size.

EXPERIMENTS

As an illustration of this architecture and related algorithm, a three-layer,

15-30-2 system was trained to detect the leftward or rightward motion of a gaussian

pulse moving across the field of input units with sudden changes in direction. The

values of d and a were 0.7788 and 0.4424, respectively. These values were chosen to

give a characteristic decay time of 4 time steps with a maximum value computed by

the input nodes of 2.0 . The pulse was of unit height with a half-width, 0, of 1.3. Figure

2 shows the input pulse as well as the values computed by the input nodes for leftward

or rightward motion. Once trained at a velocity of 0.1 unit per sampling time, the

velocity was varied over a wide range, from a factor of2 slower to a factor of2 faster as

shown in Fig. 3. For small variations in velocity the system continued to correctly
identify the type of motion. More impressive was its performance when the scaling

relations given in Eqs. (2) and (3) were used to modify the amplitude and decay rate . In

this case, acceptable performance was achieved over the entire range of velocities

tested. This was without any additional retraining at the new rates. The difference in

performance between the two curves also demonstrates that the excellent performance

of the system is not an anomaly of the particular problem chosen, but characteristic of

rescaling a and d according to Eqs. (2) and (3). We thus see that a simple use of

capacitive links to store temporal context allows for motion detection at variable

velocities.

A second experiment involving speech data was performed to compare the

system's performance to the time-delay-neural-network of Watrous and Shastri 8. In

their work, they trained a system to discriminate between suitably processed acoustic
signals of the words "no" and "go." Once trained on a single utterance, the system was

able to correctly identify other samples of these words from the same speaker. One

drawback of their approach was that the weights did not converge to a fixed point. We

were therefore particularly interested in whether our system could converge smoothly

and rapidly to a stable solution, using the same data, and yet generalize as well as

theirs did. This experiment also provided an opportunity to test a solution to the

intermediate step training problem.

The architecture was a 16-30-2 network. Each of the input nodes received an

input signal corresponding to the energy (sampled every 2.5 milliseconds) as a

function of time in one of 16 frequency channels. The input values were normalized to

lie in the range 0.0 to 1.0. The values of d and a were 0.9944 and 0.022, respectively.

These values were chosen to give a characteristic decay time comparable to the length

of each word (they were nearly the same length), and a maximum value computed by

the input nodes of 4.0. For an input signal that was part of the word "no", the training

signal was (t.O, 0.0), while for the word "go" it was (0.0, 1.0). Thus the outputs that

were compared to the training signal can be interpreted as evidence for one word or the

other at each time step. The error shown in Fig. 4 is the sum of the squares of the

755

756

difference between the desired outputs and the computed outputs for each time step,

for both words, after training up to the number ofiterations indicated along the x-axis.

2

2

a) input wavepacket

3 4

b) rightward
motion

3 4

c) leftward
motion

5 6

5 6

7 B 9 10

7 B 9 10

2 3 4 5 6 7 B 9 10

Fig. 2: a) Packet presented to input nodes. The x-axis represents the
input nodes. b) Computed values from input nodes during rightward
motion. c) Computed values during leftward motion.

100~ ______________ ~~~~ __ ~~~::::~

:"':w' ----.................. ~I!"'.::..:/,j/.:). . 'i -% 80 __ .
;~

c
o

60 _ I) • • •
• I~

r 40 +-
r
e
c
t

e
r
r
0

r

20 -I-

o I
I

.5

I
I

1.0

v'lv

I
I

1.5

'0

I
I

2.0

Fig. 3: Performance of motion detection experiment for various
velocities. Dashed curve is performance without scaling and solid
curve is with the scaling given in Eqs. (2) and (3).

125.0

100.0

75.0

50.0

25.0

0.0

0 500 1000 1500 2000 2500

iterations

Fig. 4: Error in no/go discrimination as a function of the number of
training iterations.

Evidence for each word was obtained by summing the values of the respective

nodes over time. This suggests a mechanism for signaling the completion of a

sequence: when this sum crosses a certain threshold value, the sequence (in this case,

the word) is considered recognized. Moreover, it may be possible to extend this

mechanism to apply to the case of connected speech: after a word is recognized, the

sums could be reset to zero, and the input nodes reinitialized.

Once we had trained the system on a single utterance, we tested the

perfor~ance of the resulting weights on additional utterances of the same speaker.

757

758

Preliminary results indicate an ability to correctly discriminate between "no" and

"go." This suggests that the system has at least a limited ability to generalize in this

task domain.

DISCUSSION

At a more general level, this paper raises and addresses some issues of

representation. By choosing input and output representations in a particular way, we

are able to make a static optimizer work on a temporal problem while still allowing

time to serve as its own representation. In this broader context, one realizes that the

choice of capacitive inputs for the input nodes was only one among many possible

temporal feature detectors.

Other possibilities include refractory units, derivative units and delayed spike

units. Refractory units would compute a value which was some fraction of the current

input. The fraction would decrease the more frequently and recently the node had been

"on" in the recent past. A derivative unit would have a larger output the more rapidly

a signal changed from one time step to the next. A delayed spike unit might have a

transfer function of the form Itne-at, where t is the time since the presentation of the

signal. This is similar to the function used by Tank and Hopfield7, but here it could

serve a different purpose. The maximum value that a given input generated would be

delayed by a certain amount of time. By similarly delaying the training signal, the

system could be trained to recognize a given input in the context of signals not only

preceding but also following it. An important point to note is that the transfer

functions of each of these proposed temporal feature detectors could be rescaled in a

manner similar to the capacitive nodes. This would preserve the property of the system

that the weights contain information about the temporal sequence to some degree

independent of the sampling rate.

An even more ambitious possibility would be to have the system train the

parameters, such as d in the capacitive node case. It may be feasible to do this in the

same way that weights are trained, namely by taking the partial of the computed error

with respect to the parameter in question. Such a system may be able to determine the

relevant time scales of a temporal signal and adapt accordingly.

ACKNOWLEDGEMENTS

We are grateful for fruitful discllssions with Jeff Kephart and the help of

Raymond Watrous in providing data from his own experiments. This work was

partially supported by DARPA ISTO Contract # N00140-86-C-8996 and ONR

Contract # N00014-82-0699_

1. D. Rumelhart, ed., Parallel Distributed Processing, (:\'lIT Press, Cambridge,
1986).

2. J. Denker, ed., Neural Networks for Computing, AlP Conf. Proc.,151 (1986).

3. T. J. Sejnowski and C. R. Rosenberg, NETtalk: A Parallel Network that Learns to
Read Aloud, Johns Hopkins Univ. Report No. JHU/EECS-86101 (1986).

4. J.L. McClelland and J.L. Elman, in Parallel Distributed Processing, vol. II, p. 58.

5. W. Keirstead and B.A. Huberman, Phys . Rev. Lett. 56,1094 (1986).

6. A. Lapedes and R. Farber, Nonlinear Signal Processing Using Neural Networks,
Los Alamos preprint LA-uR-87-2662 (1987).

7. D. Tank and J. Hopfield, Proc. Nat. Acad. Sci., 84, 1896 (1987).

8. R. Watrous and L. Shastri, Proc. 9th Ann. Conf Cog. Sci. Soc., (Lawrence
Erlbaum, Hillsdale, 1987), p. 518.

9. P. Kanerva, Self-Propagating Search: A Unified Theory of Memory, Stanford
Univ. Report No. CSLI-84-7 (1984).

10. M.1. Jordan, Proc. 8th Ann. Conf. Cog. Sci. Soc., (Lawrence Erlbaum, Hillsdale,
1986), p. 531.

11. J. Hopfield,Proc. Nat. Acad. SCi., 79, 2554 (1982).

12. S. Grossberg, The Adaptive Brain, vol. II, ch. 6, (North-Holland, Amsterdam,
1987).

13. G. Hinton and T. J. Sejnowski, in Parallel Distributed Processing, vol. I, p. 282.

14. B. Gold, in Neural Networks for Computing, p. 158.

15. T. Hogg and B.A. Huberman, Phys. Rev. A32, 2338 (1985).

759

