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An information-theoretic optimization principle is proposed for the development 
of each processing stage of a multilayered perceptual network. This principle of 
"maximum information preservation" states that the signal transformation that is to be 
realized at each stage is one that maximizes the information that the output signal values 
(from that stage) convey about the input signals values (to that stage), subject to certain 
constraints and in the presence of processing noise. The quantity being maximized is a 
Shannon information rate. I provide motivation for this principle and -- for some simple 
model cases -- derive some of its consequences, discuss an algorithmic implementation, 
and show how the principle may lead to biologically relevant neural architectural 
features such as topographic maps, map distortions, orientation selectivity, and 
extraction of spatial and temporal signal correlations. A possible connection between 
this information-theoretic principle and a principle of minimum entropy production in 
nonequilibrium thermodynamics is suggested. 

Introduction 

This paper describes some properties of a proposed information-theoretic 
organizing principle for the development of a layered perceptual network. The purpose 
of this paper is to provide an intuitive and qualitative understanding of how the principle 
leads to specific feature-analyzing properties and signal transformations in some simple 
model cases. More detailed analysis is required in order to apply the principle to cases 
involving more realistic patterns of signaling activity as well as specific constraints on 
network connectivity. 

This section gives a brief summary of the results that motivated the formulation 
of the organizing principle, which I call the principle of "maximum information 
preservation." In later sections the principle is stated and its consequences studied. 

In previous work l I analyzed the development of a layered network of model cells 
with feedforward connections whose strengths change in accordance with a Hebb-type 
synaptic modification rule. I found that this development process can produce cells that 
are selectively responsive to certain input features, and that these feature-analyzing 
properties become progressively more sophisticated as one proceeds to deeper cell 
layers. These properties include the analysis of contrast and of edge orientation, and 
are qualitatively similar to properties observed in the first several layers of the 
mammalian visual pathway.2 

Why does this happen? Does a Hebb-type algorithm (which adjusts synaptic 
strengths depending upon correlations among signaling activities3) cause a developing 
perceptual network to optimize some property that is deeply connected with the mature 
network's functioning as an information processing system? 
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Further analysis4.s has shown that a suitable Hebb-type rule causes a 
linear-response cell in a layered feedforward network (without lateral connections) to 
develop so that the statistical variance of its output activity (in response to an ensemble 
of inputs from the previous layer) is maximized, subject to certain constraints. The 
mature cell thus performs an operation similar to principal component analysis (PCA), 
an approach used in statistics to expose regularities (e.g., clustering) present in 
high-dimensional input data. (Oja6 had earlier demonstrated a particular form of 
Hebb-type rule that produces a model cell that implements PCA exactly.) 

Furthermore, given a linear device that transforms inputs into an output, and given 
any particular output value, one can use optimal estimation theory to make a "best 
estimate" of the input values that gave rise to that output. Of all such devices, I have 
found that an appropriate Hebb-type rule generates that device for which this "best 
estimate" comes closest to matching the input values.4•s Under certain conditions, such 
a cell has the property that its output preserves the maximum amount of information 
about its input values.s 

Maximum Information Preservation 

The above results have suggested a possible organizing principle for the 
development of each layer of a multilayered perceptual network.s The principle can be 
applied even if the cells of the network respond to their inputs in a nonlinear fashion, 
and even if lateral as well as feedforward connections are present. (Feedback from later 
to earlier layers, however, is absent from this formulation.) This principle of "maximum 
information preservation" states that for a layer of cells L that is connected to and 
provides input to another layer M, the connections should develop so that the 
transformation of signals from L to M (in the presence of processing noise) has the 
property that the set of output values M conveys the maximum amount of information 
about the input values L, subject to various constraints on, e.g., the range of lateral 
connections and the processing power of each cell. The statistical properties of the 
ensemble of inputs L are assumed stationary, and the particular L-to-M transformation 
that achieves this maximization depends on those statistical properties. The quantity 
being maximized is a Shannon information rate. 7 

An equivalent statement of this principle is: The L-to-M transformation is chosen 
so as to minimize the amount of information that would be conveyed by the input values 
L to someone who already knows the output values M. 

We shall regard the set of input signal values L (at a given time) as an input 
"message"; the message is processed to give an output message M. Each message is in 
general a set of real-valued signal activities. Because noise is introduced during the 
processing, a given input message may generate any of a range of different output 
messages when processed by the same set of connections. 

The Shannon information rate (i.e., the average information transmitted from L 
to M per message) is7 

R = LL LMP(L,M) log [P(L,M)/P(L)P(M)]. (1) 

For a discrete message space, peL) [resp. P(M)] is the probability of the input (resp. 
output) message being L (resp. M), and P(L,M) is the joint probability of the input 
being L and the output being M. [For a continuous message space, probabilities are 



487 

replaced by probability densities, and sums (over states) by integrals.] This rate can be 
written as 

(2) 

where 

h == - LL P(L) log P(L) (3) 

is the average information conveyed by message Land 

(4) 

is the average information conveyed by message L to someone who already knows M. 
Since II. is fixed by the properties of the input ensemble, maximizing R means 
minimizing I LIM, as stated above. 

The information rate R can also be written as 

(5) 

where 1M and IMI L are defined by interchanging Land M in Eqns. 3 and 4. This form is 
heuristically useful, since it suggests that one can attempt to make R large by (if 
possible) simultaneously making 1M large and IMI L small. The term 1M is largest when 
each message M occurs with equal probability. The term 1"'1/. is smallest when each L 
is transformed into a unique M, and more generally is made small by "sharpening" the 
P(M I L) distribution, so that for each L, P(M I L) is near zero except for a small set of 
messages M. 

How can one gain insight into biologically relevant properties of the L - M 
transformation that may follow from the principle of maximum information preservation 
(which we also call the "infomax" principle)? In a network, this L - M transformation 
may be a function of the values of one or a few variables (such as a connection strength) 
for each of the allowed connections between and within layers, and for each cell. The 
search space is quite large, particularly from the standpoint of gaining an intuitive or 
qualitative understanding of network behavior. We shall therefore consider a simple 
model in which the dimensionalities of the Land M signal spaces are greatly reduced, 
yet one for which the infomax analysis exhibits features that may also be important 
under more general conditions relevant to biological and synthetic network 
development. 

The next four sections are organized as follows. (i) A model is introduced in 
which the Land M messages, and the L-to-M transformation, have simple forms. The 
infomax principle is found to be satisfied when some simple geometric conditions (on 
the transformation) are met. (ii) I relate this model to the analysis of signal processing 
and noise in an interconnection network. The formation of topographic maps is 
discussed. (iii) The model is applied to simplified versions of biologically relevant 
problems, such as the emergence of orientation selectivity. (iv) I show that the main 
properties of the infomax principle for this model can be realized by certain local 
algorithms that have been proposed to generate topographic maps using lateral 
interactions. 
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A Simple Geometric Model 

In this model, each input message L is described by a point in a low-dimensional 
vector space, and the output message M is one of a number of discrete states. For 
definiteness, we will take the L space to be two-dimensional (the extension to higher 
dimensionality is straightforward). The L - M transformation consists of two steps. 
(i) A noise process alters L to a message L' lying within a neighborhood of radius v 
centered on L. (ii) The altered message L' is mapped deterministically onto one of the 
output messages M. 

A given L' - M mapping corresponds to a partitioning of the L space into regions 
labeled by the output states M. (We do not exclude a priori the possibility that multiple 
disjoint regions may be labeled by the same M.) Let A denote the total area of the L 
state space. For each M, let A (M) denote the area of L space that is labeled by M. Let 
sCM) denote the total border length that the region(s) labeled M share with regions of 
unlike M -label. A point L lying within distance v of a border can be mapped onto either 
M-value (because of the noise process L - L'). Call this a "borderline" L. A point L 
that is more than a distance v from every border can only be mapped onto the M-value 
of the region containing it. 

Suppose v is sufficiently small that (for the partitionings of interest) the area 
occupied by borderline L states is small compared to the total area of the L space. 
Consider first the case in which peL) is uniform over L. Then the information rate R 
(using Eqn. 5) is given approximately (through terms of order v) by 

R = - ~M[A(M)/A] 10g[A(M)/A] - (yv/A) ~Ms(M). (6) 

To see this, note that P(M) = A(M)/ A and that P(M I L) log P(M I L) is zero except for 
borderline L (since 0 log 0 = 1 log 1 = 0). Here y is a positive number whose value 
depends upon the details of the noise process, which determines P(M I L) for borderline 
L as a function of distance from the border. 

For small v (low noise) the first term (1M) on the RHS of Eqn. 6 dominates. It is 
maximized when the A(M) [and hence the P(M)] values are equal for all M. The second 
term (with its minus sign), which equals ( -~'4IL)' is maximized when the sum of the 
border lengths of all M regions is minimized. This corresponds to "sharpening" the 
P(M I L) distribution in our earlier, more general, discussion. This suggests that the 
infomax solution is obtained by partitioning the L space into M-regions (one for each 
M value) that are of substantially equal area, with each M-region tending to have 
near-minimum border length. 

Although this simple analysis applies to the low-noise case, it is plausible that even 
when v is comparable to the spatial scale of the M regions, infomax will favor making 
the M regions have approximately the same extent in all directions (rather than be 
elongated), in order to "sharpen" p(MI L) and reduce the probability of the noise 
process mapping L onto many different M states. 

What if peL) is nonuniform? Then the same result (equal areas, minimum border) 
is obtained except that both the area and border-length elements must now be weighted 
by the local value of peL). Therefore the infomax principle tends to produce maps in 
which greater representation in the output space is given to regions of the input signal 
space that are activated more frequently. 

To see how lateral interactions within the M layer can affect these results, let us 
suppose that the L - M mapping has three, not two, process steps: L - L' 
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- M - M, where the first two steps are as above, and the third step changes the output 
M into any of a number of states M (which by definition comprise the 
"M-neighborhood" of M). We consider the case in which this M-neighborhood relation 
is symmetric. 

This type of "lateral interaction" between M states causes the infomax principle 
to favor solutions for which M regions sharing a border in L space are M-neighbors in 
the sense defined. For a simple example in which each state M has n M-neighbors 
(including itself), and each M-neighbor has an equal chance of being the final state 
(given M), infomax tends to favor each M-neighborhood having similar extent in all 
directions (in L space). 

Relation Between the Geometric Model and Network Properties 

The previous section dealt with certain classes of transformations from one 
message space to another, and made no specific reference to the implementation of these 
transformations by an interconnected network of processor cells. Here we show how 
some of the features discussed in the previous section are related to network properties. 

For simplicity suppose that we have a two-dimensional layer of uniformly 
distributed cells, and that the signal activity of each cell at any given time is either 1 
(active) or 0 (quiet). We need to specify the ensemble of input patterns. Let us first 
consider a simple case in which each pattern consists of a disk of activity of fixed radius, 
but arbitrary center position, against a quiet background. In this case the pattern is fully 
defined by specifying the coordinates of the disk center. In a two-dimensional L state 
space (previous section), each pattern would be represented by a point having those 
coordinates. 

Now suppose that each input pattern consists not of a sharply defined disk of 
activity, but of a "fuzzy" disk whose boundary (and center position) are not sharply 
defined. [Such a pattern could be generated by choosing (from a specified distribution) 
a position Xc as the nominal disk center, then setting the activity of the cell at position 
X to 1 with a probability that decreases with distance I x - Xc I . ] Any such pattern can 
be described by giving the coordinates of the "center of activity" along with many other 
values describing (for example) various moments of the activity pattern relative to the 
center. 

For the noise process L - L' we suppose that the activity of an L cell can be 
"misread" (by the cells of the M layer) with some probability. This set of distorted 
activity values is the "message" L'. We then suppose that the set of output activities M 
is a deterministic function of L'. 

We have constructed a situation in which (for an appropriate choice of noise level) 
two of the dimensions of the L state space -- namely, those defined by the disk center 
coordinates -- have large variance compared to the variance induced by the noise 
process, while the other dimensions have variance comparable to that induced by noise. 
In other words, the center position of a pattern is changed only a small amount by the 
noise process (compared to the typical difference between the center positions of two 
patterns), whereas the values of the other attributes of an input pattern differ as much 
from their noise-altered values as two typical input patterns differ from each other. 
(Those attributes are "lost in the noise. ") 

Since the distance between L states in our geometric model (previous section) 
corresponds to the likelihood of one L state being changed into the other by the noise 
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process, we can heuristically regard the L state space (for the present example) as a 
"slab" that is elongated in two dimensions and very thin in all other dimensions. (In 
general this space could have a much more complicated topology, and the noise process 
which we here treat as defining a simple metric structure on the L state space need not 
do so. These complications are beyond the scope of the present discussion.) 

This example, while simple. illustrates a feature that is key to understanding the 
operation of the infomax principle: The character of the ensemble statistics and of the 
noise process jointly determine which attributes of the input pattern are statistically 
most significant; that is, have largest variance relative to the variance induced by noise. 
We shall see that the infomax principle selects a number of these most significant 
attributes to be encoded by the L - M transformation. 

We turn now to a description of the output state space M. We shall assume that 
this space is also of low dimensionality. For example, each M pattern may also be a disk 
of activity having a center defined within some tolerance. A discrete set of discriminable 
center-coordinate values can then be used as the M-region "labels" in our geometric 
model. 

Restricting the form of the output activity in this particular way restricts us to 
considering positional encodings L - M, rather than encodings that make use of the 
shape of the output pattern, its detailed activity values, etc. However, this restriction 
on the form of the output does not determine which features of the input patterns are 
to be encoded, nor whether or not a topographic (neighbor-preserving) mapping is to 
be used. These properties will be seen to emerge from the operation of the infomax 
principle. 

In the previous section we saw that the infomax principle will tend to lead to a 
partitioning of the L space into M regions having equal areas [if peL) is uniform in the 
coordinates of the L disk center] and minimum border length. For the present case this 
means that the M regions will tend to "tile" the two long dimensions of the L state space 
"slab," and that a single M value will represent all points ill L space that differ only in 
their low-variance coordinates. If peL) is nonuniform, then the area of the M region 
at L will tend to be inversely proportional to peL). Furthermore, if there are local lateral 
connections between M cells, then (depending upon the particular form of such 
interaction) M states corresponding to nearby localized regions of layer-M activity can 
be M-neighbors in the sense of the previous section. In this case the mapping from the 
two high-variance coordinates of L space to M space will tend to be topographic. 

Examples: Orientation Selectivity and Temporal Feature Maps 

The simple example in the previous section illustrates how infomax can lead to 
topographic maps, and to map distortions [which provide greater M-space 
representation for regions of L having large peL)]. Let us now consider a case in which 
information about input features is positionally encoded in the output layer as a result 
of the infomax principle. 

Consider a model case in which an ensemble of patterns is presented to the input 
layer L. Each pattern consists of a rectangular bar of activity (of fixed length and width) 
against a quiet background. The bar's center position and orientation are chosen for 
each pattern from uniform distributions over some spatial interval for the position, and 
over all orientation angles (i.e., from 0° to 180°). The bar need not be sharply defined, 
but can be "fuzzy" in the sense described above. We assume, however, that all 
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properties that distinguish different patterns of the ensemble -- except for center 
position and orientation -- are "lost in the noise" in the sense we discussed. 

To simplify the representation of the solution, we further assume that only one 
coordinate is needed to describe the center position of the bar for the given ensemble. 
For example, the ensemble could consist of bar patterns all of which have the same y 
coordinate of center position, but differ in their x coordinate and in orientation 0. 

We can then represent each input state by a point in a rectangle (the L state space 
defined in a previous section) whose abscissa is the center-position coordinate x and 
whose ordinate is the angle 0. The horizontal sides of this rectangle are identified with 
each other, since orientations of 0 0 and 1800 are identical. (The interior of the 
rectangle can thus be thought of as the surface of a horizontal cylinder.) 

The number Nx of different x positions that are discriminable is given by the range 
of x values in the input ensemble divided by the tolerance with which x can be measured 
(given the noise process L - L'); similarly for No. The relative lengths Llx and MJ of the 
sides of the L state space rectangle are given by Llx/ MJ = Nj No. We discuss below the 
case in which Nx > > No; if No were> > Nx the roles of x and 0 in the resulting mappings 
would be reversed. 

There is one complicating feature that should be noted, although in the interest 
of clarity we will not include it in the present analysis. Two horizontal bar patterns that 
are displaced by a horizontal distance that is small compared with the bar length, are 
more likely to be rendered indiscriminable by the noise process than are two vertical bar 
patterns that are displaced by the same horizontal distance (which may be large 
compared with the bar's width). The Hamming distance, or number of binary activity 
values that need to be altered to change one such pattern into the other, is greater in the 
latter case than in the former. Therefore, the distance in L state space between the two 

UNORIENTED RECEPTIVE FIELDS 

Figure 1. Orientation Selectivity in a Simple Model: As the input domain size 
(see text) is reduced [from (a) upper left, to (b) upper right, to (c) 
lower left figure], infomax favors the emergence of an 
orientation-selective L - M mapping. (d) Lower right figure shows 
a solution obtained by applying Kohonen's relaxation algorithm with 
50 M-points (shown as dots) to this mapping problem. 
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states should be greater in the latter case. This leads to a "warped" rather than simple 
rectangular state space. We ignore this effect here, but it must be taken into account in 
a fuller treatment of the emergence of orientation selectivity. 

Consider now an L - M transformation that consists of the three-step process 
(discussed above) (i) noise-induced L - L' ; (ii) deterministic L' - M'; (iii) 
lateral-interaction-induced M' - M. Step (ii) maps the two-dimensional L state space 
of points (x, 0) onto a one-dimensional M state space. For the present discussion, we 
.consider L' - M' maps satisfying the following Ansatz: Points corresponding to the 
M states are spaced uniformly, and in topographic order, along a helical line in L state 
space (which we recall is represented by the surface of a horizontal cylinder). The pitch 
of the helix (or the slope dO/dx) remains to be determined by the infomax principle. 
Each M-neighborhood of M states (previous section) then corresponds to an interval 
on such a helix. A state L' is mapped onto a state in a particular M-neighborhood if L' 
is closer (in L space) to the corresponding interval of the helix than to any other portion 
of the helix. We call this set of L states (for an M-neighborhood centered on M ) the 
"input domain" of M. It has rectangular shape and lies on the cylindrical surface of the 
L space. 

We have seen (previous sections) that infomax tends to produce maps having (i) 
equal M-region areas, (ii) topographic organization, and (iii) an input domain (for each 
M-neighborhood) that has similar extent in all directions (in L space). Our choice of 
Ansatz enforces (i) and (ii) explicitly. Criterion (iii) is satisfied by choosing dO / dx such 
that the input domain is square (for a given M-neighborhood size). 

Figure 1a (having dO/dx = 0) shows a map in which the output M encodes only 
information about bar center position x, and is independent of bar orientation o. The 
size of the M -neighborhood is relatively large in this case. The input domain of the state 
M denoted by the 'x' is shown enclosed by dotted lines. (The particular 0 value at which 
we chose to draw the M line in Fig. 1a is irrelevant.) For this M-neighborhood size, the 
length of the border of the input domain is as small as it can be. 

As the M -neighborhood size is reduced, the dotted lines move closer together. A 
vertically oblong input domain (which would result if we kept dO/dx = 0 ) would not 
satisfy the infomax criterion. The helix for which the input domain is square (for this 
smaller choice of M-neighborhood size) is shown in Fig. lb. The M states for this 
solution encode information about bar orientation as well as center position. If each M 
state corresponds to a localized output activity pattern centered at some position in a 
one-dimensional array of M cells, then this solution corresponds to orientation-selective 
cells organized in "orientation columns" (really "orientation intervals" in this 
one-dimensional model). A "labeling" of the linear array of cells according to whether 
their orientation preferences lie between 0 and 60, 60 and 120, or 120 and 180 degrees 
is indicated by the bold, light, and dotted line segments beneath the rectangle in Fig. 1 b 
(and 1c). 

As the M-neighborhood size is decreased still further, the mapping shown in Fig. 
Ie becomes favored over that of either Fig. 1a or lb. The "orientation columns" shown 
in the lower portion of Fig. 1 c are narrower than in Fig. 1 b. 

A more detailed analysis of the information rate function for various mappings 
confirms the main features we have here obtained by a simple geometric argument. 

The same type of analysis can be applied to different types of input pattern 
ensembles. To give just one other example, consider a network that receives an 
ensemble of simple patterns of acoustic input. Each such pattern consists of a tone of 
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some frequency that is sensed by two "ears" with some interaural time delay. Suppose 
that the initial network layers organize the information from each ear (separately) into 
tonotopic maps, and that (by means of connections having a range of different time 
delays) the signals received by both ears over some time interval appear as patterns of 
cell activity at some intermediate layer L. We can then apply the infomax principle to 
the signal transformation from layer L to the next layer M. The L state space can (as 
before) be represented as a rectangle, whose axes are now frequency and interaural 
delay (rather than spatial position and bar orientation). Apart from certain differences 
(the density of L states may be nonuniform, and states at the top and bottom of the 
rectangle are no longer identical), the infomax analysis can be carried out as it was for 
the simplified case of orientation selectivity. 

Local Algorithms 

The information rate (Eqn. I), which the infomax principle states is to be 
maximized subject to constraints (and possibly as part of an optimization function 
containing other cost terms not discussed here), has a very complicated mathematical 
form. How might this optimization process, or an approximation to it, be implemented 
by a network of cells and connections each of which has limited computational power? 
The geometric form in which we have cast the infomax principle for some very simple 
model cases, suggests how this might be accomplished. 

An algorithm due to Kohonen 8 demonstrates how topographic maps can emerge 
as a result of lateral interactions within the output layer. I applied this algorithm to a 
one-dimensional M layer and a two-dimensional L layer, using a Euclidean metric and 
imposing periodic boundary conditions on the short dimension of the L layer. A 
resulting map is shown in Fig. Id. This map is very similar to those of Figs. 1 band Ic, 
except for one reversal of direction. The reversal is not surprising, since the algorithm 
involves only local moves (of the M-points) while the infomax principle calls for a 
globally optimal solution. 

More generally, Kohonen's algorithm tends empirically8 to produce maps having 
the property that if one constructs the Voronoi diagram corresponding to the positions 
of the M-points (that is, assigns each point L to an M region based on which M-point 
L is closest to), one obtains a set of M regions that tend to have areas inversely 
proportional to P(L) , and neighborhoods (corresponding to our input domains) that 
tend to have similar extent in all directions rather than being elongated. 

The Kohonen algorithm makes no reference to noise, to information content, or 
even to an optimization principle. Nevertheless, it appears to implement, at least in a 
qualitative way, the geometric conditions that infomax imposes in some simple cases. 
This suggests that local algorithms along similar lines may be capable of implementing 
the infomax principle in more general situations. 

Our geometric formulation of the infomax principle also suggests a connection 
with an algorithm proposed by von der Malsburg and Willshaw9 to generate topographic 
maps. In their "tea trade" model, neighborhood relationships are postulated within the 
source and the target spaces, and the algorithm's operation leads to the establishment 
of a neighborhood-preserving mapping from source to target space. Such neighborhood 
relationships arise naturally in our analysis when the infomax principle is applied to our 
three-step L - L' - M' - M transformation. The noise process induces a 
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neighborhood relation on the L space, and lateral connections in the M cell layer can 
induce a neighborhood relation on the M space. 

More recently, Durbin and Willshaw lO have devised an approach to solving certain 
geometric optimization problems (such as the traveling salesman problem) by a gradient 
descent method bearing some similarity to Kohonen's algorithm. 

There is a complementary relationship between the infomax principle and a local 
algorithm that may be found to implement it. On the one hand, the principle may 
explain what the algorithm is "for" -- that is, how the algorithm may contribute to the 
generation of a useful perceptual system. This in turn can shed light on the system-level 
role of lateral connections and synaptic modification mechanisms in biological networks. 
On the other hand, the existence of such a local algorithm is important for demonstrating 
that a network of relatively simple processors -- biological or synthetic -- can in fact find 
global near-maxima of the Shannon information rate. 

A Possible Connection Between Infomax and a Thermodynamic Principle 

The principle of "maximum preservation of information" can be viewed 
equivalently as a principle of "minimum dissipation of information." When the principle 
is satisfied, the loss of information from layer to layer is minimized, and the flow of 
information is in this sense as "nearly reversible" as the constraints allow. There is a 
resemblance between this principle and the principle of "minimum entropy production" 
II in nonequilibrium thermodynamics. It has been suggested by Prigogine and others 
that the latter principle is important for understanding self-organization in complex 
systems. There is also a resemblance, at the algorithmic level, between a Hebb-type 
modification rule and the autocatalytic processes l2 considered in certain models of 
evolution and natural selection. This raises the possibility that the connection I have 
drawn between synaptic modification rules and an information-theoretic optimization 
principle may be an example of a more general relationship that is important for the 
emergence of complex and apparently "goal-oriented If structures and behaviors from 
relatively simple local interactions, in both neural and non-neural systems. 
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