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INTRODUCTION 

Most of the current neural networks use models which have 
only tenuous connections to the biological neural systems 
on which they purport to be based t and negligible input 
from the neuroscience/biophysics communities. This paper 
describes an ongoing effort which approaches neural net 
research in a program of close collaboration of neuros­
c i ent i sts and eng i neers. The effort is des i gned to 
elucidate associative learning in the marine snail 
Hermissenda crassicornis t in which Pavlovian conditioning 
has been observed. Learning has been isolated in the four 
neuron network at the convergence of the v i sua 1 and 
vestibular pathways in this animal t and biophysical 
changes t specific to learning t have been observed in the 
membrane of the photoreceptor B cell. A basic charging 
capacitance model of a neuron is used and enhanced with 
biologically plausible mechanisms that are necessary to 
replicate the effect of learning at the cellular level. 
These mechanisms are non-linear and are t primarilYt 
instances of second order control systems (e.g. t fatigue t 
modul at i on of membrane res i stance t time dependent 
rebound)t but also include shunting and random background 
fi ri ng. The output of the model of the four- neuron 
network di sp 1 ays changes in the temporal vari at i on of 
membrane potential similar to those observed in electro­
physiological measurements. 

419 



420 Alkon, Quek and Vogl 

NEUROPHYSIOLOGICAL BACKGROUND 

Alkon 1 showed that Hermissenda crassicornis, a marine 
snail, is capable of associating two stimuli in a fashion 
which exhibits all the characteristics of classical 
Pavlovian conditioning (acquisition, retention, extinc­
tion, and savings)2. In these experiments, Hermissenda 
were trained to associate a visual with a vestibular 
stimulus. In its normal environment, Hermissenda moves 
toward light; in turbulence, the animal increases the area 
of contact of its foot with the surface on which it is 
moving, reducing its forward velocity. Alkon showed that 
the snail can be condi-tioned to associate these stimuli 
through repeated exposures to ordered pairs (light 
followed by turbulence). 
When the snails are exposed to light (the unconditioned 
stimulus) followed by turbulence (the conditioned 
stimulus) after varying time intervals, the snails 
transfer to the light their unconditioned response to 
turbulence (increased area of foot contact); i.e., when 
presented with light alone, they respond with an increased 
area of foot contact. The effect of such training lasts 
for several weeks. It was further shown that the learning 
was maximized when rotation followed light by a fixed 
i nterva 1 of about one second, and that such 1 earn i ng 
exhibits all the characteristics of classical conditioning 
observed in higher animals. 
The relevant neural interconnections of Hermissenda have 
been mapped by Alkon, and learning has been isolated in 
the four neuron sub-network (Figure 1) at the con-vergence 
of the visual and vestibular pathways of this animal. 
Light generates signals in the B cells while turbulence is 
transduced into signals by the statocyst's hair cells, the 
animal's vestibular organs. The optic ganglion cell 
medi ates the interconnect ions between the two sensory 
pathways. 
The effects of learning also h\ve been observed at the 
cellular level. Alkon et al. have shown that bio­
phys i ca 1 changes assoc i ated wi th 1 earni ng occur in the 
photo-receptor B cell of Hermissenda. The signals in 
the neurons take the form of voltage dependent ion 
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Figure 1. The four neuron network at the convergence of 
the visual and vestibular pathways of Hermissenda cras­
sicornis. All filled endings indicate inhibitory 
synapses; all open endings indicate excitatory synapses. 
(a) Convergence of synaptic inhibition from the photo­
receptor B cell and caudal ha i r cell s unto the opt i c 
ganglion cell. 
(b) Pos it i ve synapt i c feedback onto the type B photo­
receptor: 1, direct synaptic excitation; 2, indirect 
excitation -- the ganglion excites the cephalic hair cell 
that inhibits the caudal hair cell, and thus disinhibits 
the type B cell; 3, indirect excitation -- the ganglion 
inhibits the caudal hair cell and thus disinhibits the 
type B cell. 
(c) Intra- and intersensory inhibition. The cephalic and 
caudal hair cells are mutually inhibitory. The B cell 
inhibits mainly the cephalic hair cell. 
From: Tabata, M., and Alkon, D. L. Positive synaptic 
feedback in visual system of nudibranch mollusk Hermissen­
da Crassicornis. J. of Neurophysiology 48: 174-191 
(1982). 
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currents, and learning is reflected in biophysical changes 
in the membrane of the B cell. The effects of ion 
currents can be observed in the form of time variations in 
membrane potential recorded by means of microelectrodes. 
It is the variation in membrane potential resulting from 
associative learning that is the focus of this research. 
Our goal is to model those properties of biological 
neurons suffi c i ent (and necessary) to demonstrate assoc i a­
tive learning at the neural network level. In order to 
understand the effect and necessity of each component of 
the model, a minimalist approach was adopted. Nothing was 
added to the model which was not necessary to produce a 
required effect, and then only when neurophysiologists, 
biophysicists, electrical engineers, and computer scien­
tists agreed that the addition was reasonable from the 
perspective of their disciplines. 

METHOD 

Following Kuffler and Nicholas4 , the model is described 
in terms of circuit elements. It must be emphasized 
however, that this is simply a recognition of the fact 
that the chemical and physical processes occurring in the 
neuron can be described by (partial) differential equa­
tions, as can electronic circuits. The equivalent circuit 
of the charging and discharging of the neuron 
membrane is shown in Figure 2. The model was constructed 
using the P3 network simulation shell developed by Zipser 
and Rabi n5 • The P3 stri p-chart capabil i ty was 
particularly useful in facilitating interdisciplinary 
interactions. Figure 3 shows the response of the basic 
model of the neuron as the frequency of input pulses is 
varied. 
Our aim, however, is not to model an individual neuron. 
Rather, we consistently focus on properties of the neural 
network that are necessary and sufficient to demonstrate 
associative learning. Examination of the behavior of 
biological neurons reveals additional common properties 
that express themselves differently depending on the 
funct i on of the i ndi vi dua 1 neuron. These propert i es 
inc 1 ude background fi ri ng, second order cont ro 1 s, and 
shunting. Their inclusion in the model is necessary for 
the simulation of associative learning, and their im­
plementation is described below. 
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INPUT CIRCUITRY 
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• • Sd~y : closes when there is no input ESPSs to the 
the cell. otherwise. open. 

Figure 2. Circuit model of the basic neuron. The lines 
from the 1 eft are the inputs to the neuron from its 
dendritic connections -to presynaptic neurons. Rsk's are 
the resistances that determine the magnitude of t~e effect 
(voltage) of the pulses from presynaptic neurons. The gap 
indicated by open circles is a high impedance coupler. R1 
through R~, together with C, determine the rise time for 
the kth lnput of the potential across the capacitor C, 
wh i ch represents the membrane. Rdecay cont ro 1 s the dis­
charge time constant of the capacl tor C When the 
membrane potential (across C) exceeds threshold potential, 
the neuron fi res a pul se into its axon (to all output 
connections) and the charge on C is reduced by the 
"discharge quantum" (see text). 

BACKGROUND FIRING IN ALL NEURONS 
Background fi ri ng, i. e., spontaneous fi ri ng by neurons 
wi thout any input pul ses from other neurons, has been 
observed in all neurons. The fundamental importance of 
background firing is exemplified by the fact that in the 
four neuron network under study, the optic ganglion does 
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Figure 3. Response of the basic model of a single neuron 
to a variety of inputs. The four horizontal strips, from 
top to bottom, show: 1) the input stream; 2) the resulting 
membrane potential; 3) the resulting stream of output 
pulses; and 4) the composite output of pulses superimposed 
on the membrane potent i a 1, ernul at i ng the correspond i ng 
electrophysiological measurement. The four vertical 
sections, from left to right, indicate: a) an extended 
input, simulating exposure of the B cell to light; b) a 
presynaptic neuron firing at maximum frequency; c) a 
presynaptic neuron firing at an intermediate frequency; d) 
a presynaptic neuron firing at a frequency insufficient to 
cause the neuron to fire ·but sufficient to maintain the 
neuron at a membrane potential just below firing 
threshold. 

BACKGROUND FIRING IN ALL NEURONS (Continued) 
not have any synapses that excite it (all its inputs are 
inhibitory). However, the optic ganglion provides the 
only two excitatory synapses in the entire network (one on 
the photoreceptor B cell and the other on the cephalad 
statocyst hair cell). Hence, without back-ground firing, 
i.e., when there is no external stimuli of the neurons, 
all activity in the network would cease. 
Further, without background firing, any stimulus to either 
the vestibular or the visual receptors will completely 
swamp the response of the network. 
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Background firing is incorporated in our model by applying 
random pul ses to a 'vi rtua l' exci tatory synapse. By 
altering the mean frequency of the random pulses, various 
levels of 'internal' homeostatic neuronal activity can be 
simulated. Physiologically, this pulse source yields 
results similar to an ion pump or other energy source, 
e.g., cAMP, in the biological system. 

SECOND ORDER CONTROL IN NEURONS 

Second order controls, i.e., the modulation of cellular 
parameters as the resul t of the past history of the 
neuron, appear in all biological neurons and play an 
essential role in their behavior. The ability of the cell 
to integrate its internal parameters (membrane potential 
in particular) over time turns out to be vital not only in 
understanding neural behavior but, more specifically, in 
providing the mechanisms that permit temporally specific 
associative learning. In the course of this investiga­
tion, a number of different second order control 
mechanisms, essential to the proper performance of the 
model, were elucidated. These mechanisms share a depen­
dence on the time integral of the difference between the 
instantaneous membrane potential and some reference 
potential. 
The part i cul ar second order cont ro 1 mechan isms i ncor­
porated into the model are: 1) Overshoot in the 1 i ght 
response of the photoreceptor B cell; 2) maintenance of 
a post-stimulus state in the B cell subsequent to 
prolonged stimulation; 3) modulation of the discharge 
resistance of the B cell; 4) Fatigue in the statocysts 
and the optical ganglion; and 5) time dependent rebound 
in the opt i cal gangl ion. In addi t i on to these second 
order control effects, the model required the inclusion 
of the observed shunting of competing inputs to the B cell 
during light exposure. The consequence of the interaction 
of these mechanisms with the basic model of the neurons in 
the four neuron network is the natural emergence of 
temporally specific associative learning. 

OVERSHOOT IN THE LIGHT RESPONSE OF THE PHOTORECEPTOR B 
CELL 

Under strong light exposure, the membrane potential of an 
isolated photoreceptor B cell experiences an initial 
'overshoot' and then settles at a rapidly firing level 
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far above the usual firing potential of the neuron (see 
Figure 4a). (We refer to the elevated membrane potential 
of the B cell during illumination as the "active firing 
membrane potential"). The initial overshoot (and slight 
ringing) observed in the potential of the biological B 
cell (F i gure 4a) is the signature of an integral second 
order control system at work. This control was realized 
in the model by altering the quantity of charge removed 
from the cell (the discharge quantum) each time the cell 
fires. (The biological cell loses charge whenever it 
fi res and the quant i ty of charge lost vari es wi th the 
membrane potential.) The discharge quantum is modulated 
by the definite integral of the difference between the 
membrane potential and the active firing membrane poten­
tial as follows: 

Qdiseharge(t) = K X h' {Potmembrane(t) - Potaetive ffring(t)}dt 
o 

As the membrane potential rises above the active firing 
membrane potential, the value of the integral rises. The 
magnitude of the discharge quantum rises with the in­
tegra 1 . Th is increased discharge retards the membrane 
depolarization, until at some point, the size of the 
discharge quantum outstrips the charging effect of light 
on the membrane potential, and the potential falls. As 
the membrane potent i a 1 fall s below the act i ve fi ri ng 
membrane potential, the magnitude of the discharge quantum 
begi ns to decrease (i. e. , the value of the integral 
falls). This, in turn, causes the membrane potential to 
rise when the charging owing to light input once again 
overcomes the declining discharge quantum. 
This process repeats with each subsequent swing in the 
membrane potential becoming smaller until steady state is 
reached at the active fi ri ng membrane potent i a 1 . The 
response of the model to simulated light exposure is shown 
in Figure 4b. Note that only a single overshoot is 
obvious and that steady state is rapidly reached. 

MAINTAINING THE POST-STIMULUS STATE IN THE B CELL 

During exposure to light, the B cell is strongly 
depolarized, and the membrane potential is maintained 
substantially above the firing threshold potential. When 
the light stimulus is removed, one would expect the cell 
to fire at its maximum rate so as to bring its membrane 
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Figure 4. Response of the B cell and the model to a light 
pulse. 
(a). Electrophysiological recording of the response of 
the photoreceptor B cell to 1 i ght. Note the in it i a 1 
overshoot and one cycle of oscillation before the membrane 
potential settles at the "active firing potential." From: 
Alkon t D.L. Memory Traces in the Brain. Cambridge 
University Press t London (1987)t p.S8. 
(b) Response of the model to a light pulse. 
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potential below the firing threshold (by releasing a 
discharge quantum w·ith each output pulse). This does not 
happen in Herm;ssenda; there is, however, a change in 
the amount of charge released with each output pulse when 
the cell is highly depolarized. 
Note that the di scharge quantum is modul ated post-exposure 
in a manner analogous to that occurring during exposure as 
discussed above: It is modulated by the magnitude of the 
membrane potential above the firing threshold. The result 
of this modulation is that the more positive the membrane 
potential, the smaller the discharge quantum, (subject to 
a non-negative minimum value). The average value of the 
interval between pulses is also modulated by the magnitude 
of the discharge quantum. This modulation persists until 
the membrane potential returns to the fi ri ng threshold 
after cessation of light exposure. 
This mechanism is particular to the B cell. Upon cessa­
tion of vestibular stimulation, hair cells fire rapidly 
unt il thei r membrane potent i a 1 s are below the fi ri ng 
threshold, just as the basic model predicts. 

MODULATION OF DISCHARGE RESISTANCE IN THE B CELL 

The duration of the post-stimulus membrane potential is 
determined by the magnitude of the discharge resistance 
of the B cell. In the model, the discharge resistance 
changes exponentially toward a predetermined maximum 
value, R~x' when the membrane potential exceeds the firing 
threshola. Roose is the baseline value. That is, 

Rdisch(t-to) = Rmax - {Rmax - RdiSCh(tO)}exp{(t-to)/rrise} 

when the membrane potential is above the firing threshold, 
and 

Rdisch(t-to) = Roose- {Rbase- Rdisch(to)}exp{(t-to)/1'decay} 

when the membrane potential is below the firing threshold. 

FATIGUE IN STATOCYST HAIR CELLS 

In Hermissenda, caudal cell activity actually decreases 
immediately after it has fired strongly, rather than 
returning to its normal background level of firing. This 
effect, which results from the tendency of membrane 
potential to "fatigue" toward its resting potential, is 
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incorporated into our model of the statocyst hair cells 
using the second order control mechanism previously 
described. I.e., when the membrane potential of a hair 
cell is above the firing threshold (e.g., during vesti­
bular stimulation), the shunting resistance of the cell 
decays exponentially with time toward zero as long as the 
hair cell membrane potential is above the firing 
threshold. This resistance is allowed to recover exponen­
tially to its usual value when the membrane potential 
falls below the firing threshold. 
FATIGUE OF THE OPTICAL GANGLION CELL DURING HYPER­
POLARIZATION 

In Hermissenda the optical ganglion undergoes hyper­
polarization at the beginning of the light pulse and/or 
vestibular stimulus. Contrary to what one might expect, 
it then recovers and is close to the firing threshold by 
the time the stimuli cease. This effect is incorporated 
into the model by fatigue induced by hyperpolarization. 
As above, this fatigue is implemented by allowing the 
shunt i ng res i stance in the gangl ion cell to decrease 
exponentially toward a minimum value, while the membrane 
potential is below the firing threshold by a prespecified 
amount. The value of the minimum shunting resistance is 
modulated by the magnitude of hyperpolarization (potential 
difference between the membrane potential and the firing 
threshold). The shunting resistance recovers 
exponentially from its hyperpolarized value, once the 
membrane potential returns to its firing threshold as a 
result of background firing input. 
The effect of this decrease is that the ganglion cell will 
temporarily remain relatively insensitive to the enhanced 
post-stimulus firing of the B cell until the shunting 
resistance recovers. Once the membrane potential of the 
ganglion cell recovers, the pulses from the ganglion cell 
will excite the B cell and maintain its prolongation 
effect. (See Figure 1.) 
The modulation of the minimuM shunting resistance by the 
magnitude Qf hyperpolarization introduces the first 
stimulus pairing dependent component in the post-stimulus 
behavi or of the B cell because the degree of 
hyperpolarization is higher under paired stimulus 
conditions. 
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TIME DEPENDENT REBOUND IN THE OPTICAL GANGLION CELL 

Experimental evidence with Hermissenda indicates that the 
rebound of the optical ganglion is much stronger than is 
possible if the usual background activity were the sole 
cause of this rebound. Furthermore rebound in the 
gang1 ion ce 11 is stronger when t~e 1 i ght exposure 
precedes vestibular stimulus by the optimal inter-stimulus 
interval (lSI). Since the ganglion cell has no 
exc i tatory input synapses, the increased rebound must 
result from a mechanism internal to the cell that 
heightens its background activity during pairing at the 
optimal lSI. The mechanism must be time dependent and 
must be able to distinguish between the inhibitory signal 
which comes from the B cell and that which comes from the 
caudal hair cell. To achieve this result, two mechanisms 
must interact. 
The first mechanism enhances the inhibitory effect of the 
caudal hair cellon the gangl ion cell. This "caudal 
inhibition enhancer", elE, is triggered by pu1 ses from 
the B cell. The elE has the property that it rises 
exponentially toward 1.0 when a pulse is seen at the 
synapse from the B cell and decays toward zero when no 
such pulses are received. 
The second mechanism provides an increase in the back­
ground act i vi ty of the opt i c gang1 i on when the cell is 
hyperpolarized; it is a fatigue effect at the synapse from 
the caudal hair cell. This synapse specific fatigue (SSF) 
rises toward 1.0 as any of the inhibitory synapses onto 
the ganglion receive a pulse, and decays toward zero when 
there is no incoming inhibitory pulse. Note that this 
second order control causes fatigue at the synapse between 
the caudal hair cell and the ganglion whenever any 
inhibitory pulse is incident on the ganglion. 
Control of the lSI resides in the interaction of these 
two mechanisms. The efficacy of an inhibitory pulse from 
the caudal cell upon the gang1 ion ce 11 is determi ned by 
the product of elE and (1 - SSF), the "lSI convo1ver." 
With light exposure alone or when caudal stimulation 
follows light, the elE rises toward 1.0 along with the 
SSF. Initially, (1 - SSF) is close to 1.0 and the elE 
term dominates the convo1ver function. As elE approaches 
1.0, the (1 - SSF) term brings the convolver toward o. At 
some intermediate time, the lSI convo1ver is at a maximum. 



Computer Modeling of Associative Learning 431 

When vestibular stimulus precedes light exposure, the SSF 
rises at the start of the vestibular stimulus while the 
elE remains at o. When light exposure then begins, the 
elE rises, but by then (1 - SSF) is approaching zero, and 
the convolver does not reach any significant value. 
The result of this interaction is that when caudal 
st~mulation follows light by the optimal lSI, the inhibi­
tion of the ganglion will be maximal. This causes 
he i g htened background act i v i ty in the gang 1 ion. . Upon 
cessation of stimulus, the heightened background activity 
will express itself by rapidly depolarizing the ganglion 
membrane, thereby bringing about the desired rebound 
firing. 

SHUNTING OF THE PHOTORECEPTOR B CELL DURING EXPOSURE TO 
LIGHT 

In experiments in which light and vestibular stimulus are 
paired, both the B cell and the caudal hair statocyst cell 
fire strongly. There is an inhibitory synapse from the 
hair cell to the B cell (see Figure 1). Without shunting, 
the hair cell output pulses interfere with the effect of 
1 ight on the B cell and prevent it from arriving at a 
level of depolarization necessary for learning. This is 
contrary to experimental data which shows that the 
response of the B ~ell to light (during the light pulse) 
is constant whether or not vestibular stimulus is present. 
Biological experiments have determlned that while light is 
on, the B cell shunting resistance is very low making the 
cell insensitive to incoming pulses. 
Figures 5-8 summari.ze the current performance of the 
model. Figures 6, 7, and 8 present the response to a 
light pulse of the untrained, sham trained (unpaired light 
and turbulence), and trained (paired light and turbulence) 
model of the four neuron network. 

DISCUSSION 

The model developed here is more complex than those 
generally employed in neural network research because the 
mechanisms invoked are primarily second order controls. 
Furthermore, while we operated under a paradigm of minimal 
commitment (no new features unless needed), the functional 
requi rements of network demanded that di fferent i at i ng 
features be added to the cells. The model reproduces the 
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electrophysio10gica1 measure-ments in Hermissenda that 
are indicative of associative learning. These results 
call into question the notion that linear and quasi-linear 
summing elements ar~ capable of emulating neural activity 
and the learning inherent in neural systems. 
This preliminary modeling effort has already resulted in 
a greater understandi.ng of bi 01 ogi cal systems by 1) 
modeling experiments which cannot be performed in vivo, 
2) testing theoretical constructs on the model, and 3) 
developing hypotheses and proposing neurophysiological 
experiments. The effort has also significantly assisted 
in the deve 1 opment of neural network a 1 gori thms by 
uncoveri ng the necessary and suffi ci ent components for 
learning at the neurophysiological level. 
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RANDOM 
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Figure 5. Prolongation of B cell post-stimulus membrane 
depolarization consequent to learning (exposure to paired 
stimuli). 
From: West, A. Barnes, E., Alkon, D.L. Primary changes 
of voltage responses during retention of associative 
learning. J. of Neurophysiol. 48:1243-1255 (1982). Note 
the increase ins i ze of the shaded area wh i ch is the 
effect of learning. 

Figure 6. Naive model: response of untrained ("control" 
in Fig. 5) model to light. 
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Figure 7. Sham training: response of model to light 
following presentation of 26 randomly alternating ("­
unpaired" in Fig. 5) light and turbulence inputs. 
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Figure 8. Trained network: response of network to light 
following presentation of 13 light and turbulence input 
at optimum lSI. The top trace of this figure is the B 
ce 11 response to 1 i ght alone. Note that an increased 
firing frequency and active membrane potential is main­
tained after the cessation of light, compared to Figures 
6 and 7. This is analogous to what may be seen in 
Hermissenda, Figure 5. Note also that the optic ganglion 
and the cephalad hair cell (trace 2 and 3 of this figure) 
show a decreased post-stimulus firing rate compared with 
that of Figures 6 and 7. 


