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ABSTRACT 

Hidden Markov models are widely used for automatic speech recog­
nition. They inherently incorporate the sequential character of the 
speech signal and are statistically trained. However, the a-priori 
choice of the model topology limits their flexibility. Another draw­
back of these models is their weak discriminating power. Multilayer 
perceptrons are now promising tools in the connectionist approach 
for classification problems and have already been successfully tested 
on speech recognition problems. However, the sequential nature of 
the speech signal remains difficult to handle in that kind of ma­
chine. In this paper, a discriminant hidden Markov model is de­
fined and it is shown how a particular multilayer perceptron with 
contextual and extra feedback input units can be considered as a 
general form of such Markov models. 

INTRODUCTION 

Hidden Markov models (HMM) [Jelinek, 1976; Bourlard et al., 1985] are widely used 
for automatic isolated and connected speech recognition. Their main advantages 
lie in the ability to take account of the time sequential order and variability of 
speech signals. However, the a-priori choice of a model topology (number of states, 
probability distributions and transition rules) limits the flexibility of the HMl\l's, 
in particular speech contextual information is difficult to incorporate. Another 
drawback of these models is their weak discriminating power. This fact is clearly 
illustrated in [Bourlard & Wellekens, 1989; Waibel et al., 1988] and several solutions 
have recently been proposed in [Bahl et al., 1986; Bourlard & VVellekens, 1989; 
Brown, 1987]. 

The multilayer perceptron (MLP) is now a familiar and promising tool in con­
nectionist approach for classification problems [Rumelhart et al., 1986; Lippmann, 
1987} and has already been widely tested on speech recognition problems [Waibel 
et aI., 1988; Watrous & Shastri, 1987; Bourlard & Wellekens, 1989]. However, the 
sequential nature of the speech signal remains difficult to handle with ltfLP. It is 
shown here how an MLP with contextual and extra feedback input units can be 
considered as a form of discriminant HMM. 
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STOCHASTIC MODELS 

TRAINING CRITERIA 

Stochastic speech recognition is based on the comparison of an utterance to be 
recognized with a set of probabilistic finite state machines known as Hl\1l\f. These 
are trained such that the probability P(Wi IX) that model Wi has produced the 
associated utterance X must be maximized, but the parameter space which this 
optimization is performed over makes the difference between independently trained 
models and discriminant ones. 
Indeed, the probability P(WiIX) can be written as 

P(W.'IX) = P(XIWi).P(Wi ) 
t P(X)· (1) 

In a recognition phase, P(X) may be considered as a constant since the model 
parameters are fixed but, in a training phase, this probability depends on the pa­
rameters of all possible models. Taking account of the fact that the models are 
mutually exclusive and if A represents the parameter set (for all possible models), 
(1) may then be rewritten as: 

Maximization of P(WdX, A) as given by (2) is usually simplified by restricting it 
to the subspace of the Uti parameters. This restriction leads to the Maximum 
Likelihood Estimators (MLE). The summation term in the denominator is constant 
over the parameter space of Uti and thus, maximization of P(XIWi' A) implies that 
of its bilinear map (2). A language model provides the value of P(Wi ) independently 
of the acoustic decoding [Jelinek, 1976]. 

On the other hand, maximization of P(WiIX, A) with respect to the whole parameter 
space (Le. the parameters of all models WI, W2 , ••• ) leads to discriminant models 
since it implies that the contribution of P(X IWi , A)P(Wi) should be enhanced while 
that of the rival models, represented by 

L P(XIWk' A)P(Wk), 
kti 

should be reduced. This maximization with respect to the whole parameter space 
has been shown equivalent to the maximization of Mutual Information (l\fMI) be­
tween a model and a vector sequence [Bahl et al., 1986; Brown, 1987]. 

STANDARD HIDDEN MARKOV MODELS 

In the regular discrete HMM, the acoustic vectors (e.g. corresponding to 10 ms 
speech frames) are generally quantized in a front-end processor where each one is 
replaced by the closest (e.g. according to an Euclidean norm) prototype vector 
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Yi selected in a predetermined finite set y of cardinality I. Let Q be a set of I< 
different states q(k), with k = 1, ... , K. Markov models are then constituted by the 
association (according to a predefined topology) of some of these states. If H~MM are 
trained along the MLE criterion, the parameters of the models (defined hereunder) 
must be optimized for maximizing P(XIW) where X is a training sequence of 
quantized acoustic vectors Xn E y, with n = 1, ... , N and W is its associated 
Markov model made up of L states ql E Q with l = 1, ... , L. Of course, the same 
state may occur several times with different indices l, so that L :f. I<. Let us denote 
by q,/ the presence on state ql at a given time n E [1, N]. Since events q,/ are 
mutually exclusive, probability P(XIW) can be written for any arbitrary n: 

L 

P(XIW) = L P(q,/,XIW) , (3) 
l=l 

where P(q,/, XIW) denotes thus the probability that X is produced by W while 
associating Xn with state ql. Maximization of (3) can be worked out by the classical 
forward-backward recurrences of the Baum-Welch algorithm [J elinek 1976, Bourlard 
et al., 1985] 

Maximization of P(XIW) is also usually approximated by the Viterbi criterion. It 
can be viewed as a simplified version of the MLE criterion where, instead of taking 
account of all possible state sequences in W capable of producing X, one merely 
considers the most probable one. To make all possible paths apparent, (3) can also 
be rewritten as 

L L 

P(XIW) = L ... L P(qt,···,qt"XIW), 
II =1 IN=1 

and the explicit formulation of the Viterbi criterion is obtained by replacing all 
summations by a "max" operator. Probability (3) is then approximated by: 

- 1 N P(XIW) = max P(qll,···,qlN,XIW) , (4) ll, ... ,lN 

and can be calculated by the classical dynamic time warping (DTW) algorithm 
[Bourlard et al., 1985]. In that case, each training vector is then uniquely associated 
with only one particular transition. 

In both cases (MLE and Viterbi) , it can be shown that, according to classical 
hypotheses, P(XIW) and P(XIW) are estimated from the set of local parameters 
p[q(l), Yi Iq(-)(k), W], for i = 1, ... , I and k, f = 1, ... , I<. Notations q (-)(k) and 
q(l) denote states E Q observed at two consecutive instants. In the particular case 
of the Viterbi criterion, these parameters are estimated by: 

Vi E [1, I], Vk, l E [1, [(], (5) 

where niH denotes the number of times each prototype vector Yi has been associ­
ated with a particular transition from q(k) to q(l) during the training. However, if 
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the models are trained along this formulation of the Viterbi algorithm, no discrimi­
nation is taken into account. For instance, it is interesting to observe that the local 
probability (5) is not the suitable measure for the labeling of a prototype vector 
Yi, i.e. to find the most probable state given a current input vector and a specified 
previous state. Indeed, the decision should ideally be based on the Bayes rule. In 
that cae, the most probable state q( f opt ) is defined by 

f opt = 

and not on the basis of (5). 

argmax p[q( f) IYi, q( - >( k)] , 
f 

It can easily be proved that the estimate of the Bayes probabilities in (6) are: 

(6) 

(7) 

In the last section, it is shown that these values can be generated at the output of 
a particular MLP. 

DISCRIMINANT HMM 

For quantized acoustic vectors and Viterbi criterion, an alternative HMM using 
discriminant local probabilities can also be described. Indeed, as the correct crite­
rion should be based on (1), comparing with (4), the "Viterbi formulation" of this 
probability is 

(8) 

Expression (8) clearly puts the best path into evidence. The right hand side factor­
izes into 

and suggests two separate steps for the recognition. The first factor represents the 
acoustic decoding in which the acoustic vector sequence is converted into a sequence 
of states. Then, the second factor represents a phonological and lexical step: once 
the sequence of states is known, the model W associated with X can be found from 
the state sequence without an explicit dependence on X so that 

For example, if the states represent phonemes, this probability must be estimated 
from phonological knowledge of the vocabulary once for all in a separate process 
without any reference to the input vector sequence. 
On the contrary, P( ql1 ' ••• , q~ IX) is immediately related to the discriminant local 
probabilities and may be factorized in 
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Now, each factor of (9) may be simplified by relaxing the conditional constraints. 
More specifically, the factors of (9) are assumed dependent on the previous state 
only and on a signal window of length 2p + 1 centered around the current acoustic 
vector. The current expression of these local contributions becomes 

(10) 

where input contextual information is now taken into account, X~ denoting the 
vector sequence Xm , X m +1! ... , X n • If input contextual information is neglected (p = 
0), equation (10) represents nothing else but the discriminant local probability (7) 
and is at the root of a discriminant discrete HMM. Of course, as for (7), these 
local probabilities could also be simply estimated by counting on the training set, 
but the exponential increase of the number of parameters with the width 2p + 1 of 
the contextual window would require an exceedingly large storage capacity as an 
excessive size of training data to obtain statistically significant parameters. It is 
shown in the following section how this drawback is circumvented by using an MLP. 
It is indeed proved that, for the training vectors, the optimal outputs of a recurrent 
and context-sensitive MLP are the estimates of the local probabilities (10). Given 
its so-called "generalization property", the MLP can then be used for interpolating 
on the test set. 

Of course, from the local contributions (10), P(WIX) can still be obtained by the 
classical one-stage dynamic programming [Ney, 1984; Bourlard et al., 1985] . Indeed, 
inside HMM, the following dynamic programming recurrence holds 

(11) 

where parameter k runs over all possible states preceding qe and P(qeIXr) denotes 
the cumulated best path probability of reaching state ql and having emitted the 
partial sequence Xr . 

RECURRENT MLP AND DISCRIMINANT HMM 

Let q( k), with k = 1, ... , K, be the output units of an MLP associated with different 
classes (each of them corresponding a particular state of Q) and I the number of 
prototype vectors Yi. Let Vi denote a particular binary input of the l\fLP. If no 
contextual information is used, Vi is the binary representation of the index i of 
prototype vector Yi and, more precisely, a vector with all zero components but 
the i-th one equal to 1. In the case of contextual input, vector Vi is obtained 
by concatenating several representations of prototype vectors belonging to a given 
contextual window centered on a current '!Ii. The architecture of the resulting MLP 
is then similar to NETtaik initially described in [Sejnowski & Rosenberg, 1987] for 
mapping written texts to phoneme strings. The same kind of architecture has also 
been proved successful in performing the classification of acoustic vector strings 
into phoneme strings, where each current vector was classified by taking account 
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of its surrounding vectors [Bourlard & Wellekens, 1989]. The input field is then 
constituted by several groups of units, each group representing a prototype vector. 
Thus, if 2p + 1 is the width of the contextual window, there are 2p + 1 groups of I 
units in the input layer. 

However, since each acoustic vector is classified independently of the preceding clas­
sifications in such feedforward architectures, the sequential character of the speech 
signal is not modeled. The system has no short-term memory from one classifi­
cation to the next one and successive classifications may be contradictory. This 
phenomenon does not appear in HMM since only some state sequences are permit­
ted by the particular topology of the model. 

Let us assume that the training is performed on a sequence of N binary inputs 
{Vii' ••• , ViN} where each in represents the index of the prototype vector at time n (if 
no context) or the "index" of one of the I(2p+l) possible inputs (in the case of a 2p+ 1 
contextual window). Sequential classification must rely on the previous decisions 
but the final goal remains the association of the current input vectors with their own 
classes. An MLP achieving this task will generate, for each current input vector Vin 

and each class q(f), f = 1, ... , K, an output value g(in, kn' f) depending on the class 
q(kn ) in which the preceding input vector Vi n_ i was classified. Supervision comes 
from the a-priori knowledge of the classification of each Vi n • The training of the 
MLP parameters is usually based on the minimization of a mean square criterion 
(LMSE) [Rumelhart et al., 1986] which, with our requirements, takes the form: 

N K 

E = 4 L L [g(in, kn, f) - d(in, f)]2 , 
n=1 l=1 

(12) 

where d(in, f) represents the target value of the f-th output associated with the 
input vector Vi n • Since the purpose is to associate each input vector with a single 
class, the target outputs, for a vector Vi E q(f), are: 

d(i, f) 
d(i, m) 

1, 

0, Vm ;f:. f , 

which can also be expressed, for each particular Vi E q(f) as: d(i, m) = bml . The 
target outputs d( i, f) only depend on the current input vector 'Vi and the considered 
output unit, and not on the classification of the previous one. The difference between 
criterion (12) and that of a memoryless machine is the additional index kn which 
takes account of the previous decision. Collecting all terms depending on the same 
indexes, (12) can thus be rewritten as: 

1 J KKK 

E = - L L L L nilel· [g(i, k, m) - d(i,m)]2 , 
2. 

*=1 k=1 l=1 m=1 

(13) 

where J = I if the MLP input is context independent and J = .z(2p+l) if a 2p + 1 
contextual window is used; nikl represents the number of times 'Vi has been classified 
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Figure 1: Recurrent and Context-Sensitive MLP (IZI = delay) 

in q(f) while the previous vector was known to belong to class q(k). Thus, whatever 
the MLP topology is, i.e. the number of its hidden layers and of units per 
layer, the optimal output values gopt(i, k, m) are obtained by canceling the partial 
derivative of E versus g( i, k, m). It can easily be proved that, doing so, the optimal 
values for the outputs are then 

gopt(i, k, m) K . 
Ll=l nikl 

(14) 

The optimal g(i, k, m)'s obtained from the minimization of the MLP criterion are 
thus the estimates of the Bayes probabilities, i.e. the discriminant local probabilities 
defined by (7) if no context is used and by (10) in the contextual case. 

It is important to keep in mind that these optimal values can be reached only 
provided the MLP contains enough parameters and does not get stuck into a local 
minimum during the training. 

A convenient way to generate the g(i, k,f) is to modify its input as follows. For 
each Vin' an extended vector "'in = (vt., Vin) is formed where vt. is an extra input 
vector containing the information on the decision taken at time n - 1. Since output 
information is fed back in the input field, such an MLP has a recurrent topology. 
The final architecture of the corresponding MLP (with contextual information and 
output feedback) is represented in Figure 1 and is similar in design to the net 
developed in [J ordan, 1986] to produce output pattern sequences. 
The main advantage of this topology, when compared with other recurrent models 
proposed for sequential processing [Elman 1988, Watrous, 1987], over and above the 
possible interpretation in terms of HMM, is the control of the information fed back 
during the training. Indeed, since the training data consists of consecutive labeled 
speech frames, the correct sequence of output states is known and the training is 
supervised by providing the correct information. 

Replacing in (13) dei, m) by the optimal values (14) provides a new criterion where 
the target outputs depend now on the current vector, the considered output and 
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the classification of the previous vector: 

J KKK [ ]2 
E'" = ~ L L L L nikl. g(i,k,m) - ;ikm. ' 

i=l k=l l=l m=l l:l=l n,kl 

(15) 

and it is clear (by canceling the partial derivative of E'" versus g(i, k, m)) that the 
lower bound for E'" is reached for the same optimal outputs as (14) but is now equal 
to zero, what provides a very useful control parameter during the training phase. 

It is evident that these results directly follow from the minimized criterion and not 
from the topology of the model. In that way, it is interesting to note that the same 
optimal values (14) may also result from other criteria as, for instance, the entropy 
[Hinton, 1987] or relative entropy [Solla et al., 1988] of the targets with respect to 
outputs. Indeed, in the case of relative entropy, e.g., criterion (12) is changed in: 

~ ~ [ . d(in, f) . ( 1- d(in' f) )] 
Ee = L.J L.J d(ln, f). In C k f) + (1 - d(ln, £)).In 1 - C k f) , 

n=l l=l 9 I n , n, 9 In, n, 

(16) 
and canceling its partial derivative versus g(i, k, m) yields the optimal values (14). 
In that case, the optimal outputs effectively correspond now to Ee,min = o. 
Of course, since these results are independent of the topology of the models, they 
remain also valid for linear discriminant functions but, in that case, it is not guar­
anteed that the optimal values (14) can be reached. However, it has to be noted 
that in some particular cases, even for not linearly separable classes, these optimal 
values are already obtained with linear discriminant functions (and thus with a one 
layered perceptron trained according to an LMS criterion). 

It is also important to point out that the same kind of recurrent A1LP could also be 
used to estimate local probabilities of higher order Markov models where the local 
contribution in (9) are no longer assumed dependent on the previous state only but 
also on several preceding ones. This is easily implemented by extending the input 
field to the information related to these preceding classifications. Another solution 
is to represent, in the same extra input vector, a weighted sum (e.g. exponentially 
decreasing with time) of the preceding outputs [Jordan, 1986]. 

CONCLUSION 

Discrimination is an essential requirement in speech recognition and is not incor­
porated in the standard HMM. A discriminant HMM has been described and links 
between this new model and a recurrent MLP have been shown. Recurrence permits 
to take account of the sequential information in the output sequence. Moreover, 
input contextual information is also easily captured by extending the input field. It 
has finally been proved that the local probabilites of the discriminant HAf}.l may 
be computed (or interpolated) by the particular MLP so defined. 



510 Bourlard and Wellekens 

References 

[1] Bahl L.R., Brown P.F., de Souza P.V. & Mercer R.L. (1986). Maximum Mu­
tual Information Estimation of Hidden Markov Model Parameters for Speech 
Recognition, Proc.ICASSP-86, Tokyo, ppA9-52, 

[2] Bourlard H., Kamp Y., Ney H. & Wellekens C.J. (1985). Speaker-Dependent 
Connected Speech Recognition via Dynamic Programming and Statistical 
Methods, Speech and Speaker Recognition, Ed. M.R. Schroeder, KARGER, 

[3] Bourlard H. &. Wellekens C.J. (1989). Speech Pattern Discrimination and Mul­
tilayer Perceptrons, Computer, Speech and Language, 3, (to appear), 

[4] Brown P. (1987). The Acoustic-Modeling Problem in A utomatic Speech Recog­
nition, Ph.D. thesis, Comp.Sc.Dep., Carnegie-Mellon University, 

[5] Elman J .L. (1988). Finding Structure in Time, CRL Technical Report 8801, 
UCSD, Report, 

[6] Hinton G.E. (1987). Connectionist Learning Procedures, Technical Report 
CMU-CS-87-115, 

[7] Jelinek F. (1976). Continuous Recognition by Statistical Methods, Proceedings 
IEEE, vol. 64, noA, pp. 532-555, 

[8] Jordan M.L. (1986). Serial Order: A Parallel Distributed Processing Approach, 
UCSD, Tech. Report 8604, 

[9] Lippmann R.P. (1987). An Introduction to Computing with Neural Nets, IEEE 
ASSP Magazine, vol. 4, pp. 4-22, 

[10] Ney H. (1984). The use of a one-stage dynamic programming algorithm for 
connected word recognition. IEEE Trans. ASSP vol. 32, pp.263-271, 

[11] Rumelhart D.E., Hinton G.E. & Williams R.J. (1986). Learning Internal Repre­
sentations by Error Propagation, Parallel Distributed Processing. Exploration 
of the Microstructure of Cognition. vol. 1: Foundations, Ed. D.E.Rumelhart &. 
J .L.McClelland, MIT Press, 

[12] Sejnowski T.J. &. Rosenberg C.R. (1987). Parallel Networks that Learn to Pro­
nounce English Text. Complex Systems, vol. 1, pp. 145-168, 

[13] Solla S.A., Levin E. &. Fleisher M. (1988). Accelerated Learning in Layered 
Neural Networks, AT&T Bell Labs. Manuscript, 

[14] Waibel A., Hanazawa T., Hinton G., Shikano K. & Lang, K. (1988). Phoneme 
Recognition Using Time-Delay Neural Networks, Proc. ICASSP-88, New York, 

[15] Watrous R.L. & Shastri L. (1987). Learning phonetic features using connec­
tionist networks: an experiment in speech recognition, Proceedings of the First 
International Conference on Neural Networks, IV -381-388, San Diego, CA, 


