
20

ASSOCIATIVE LEARNING
VIA INHIBITORY SEARCH

David H. Ackley
Bell Communications Research

Cognitive Science Research Group

ABSTRACT

ALVIS is a reinforcement-based connectionist architecture that
learns associative maps in continuous multidimensional environ­
ments. The discovered locations of positive and negative rein­
forcements are recorded in "do be" and "don't be" subnetworks,
respectively. The outputs of the subnetworks relevant to the cur­
rent goal are combined and compared with the current location to
produce an error vector. This vector is backpropagated through
a motor-perceptual mapping network. to produce an action vec­
tor that leads the system towards do-be locations and away from
don 't-be locations. AL VIS is demonstrated with a simulated robot
posed a target-seeking task.

INTRODUCTION

The "backpropagation algorithm" or generalized delta rule (Rumelhart, Hinton, &
Williams, 1986) is sometimes criticized on the grounds that it is a "supervised"
learning algorithm, which requires a "teacher" to provide correct outputs, and
apparently leaves open the question of how the teacher learned the right answers.
However, work. by Rumelhart (personal communication, 1987) and Miyata (1988)
has shown how the environment that a system is embedded in can serve as the
"teacher." If, as in this paper, a backpropagation network is posed the task of
mapping from a vector 9 of robot arm joint angles to the resulting vector X of
arm coordinates in space (the "forward kinematics problem"), then input-output
training data can be obtained by supplying sets of joint angles to the arm and
observing the resulting configurations.

Although this "environment as teacher" strategy shows how a "teacher" can come to
possess useful information without an infinite regress learning it, it is not a complete
solution. There are problems for which the "laws of physics" of an environment
do not suffice to determine the solution. Suppose, for example, that a robot is
posed the problem of learning to reach for different positions in space depending
on which of a set of signals is currently presented, and that the only feedback
available from the environment is success or failure information about the current
arm configuration.

Associative Learning via Inhibitory Search 21

d

Figure 1. A "trunk" robot.

What is needed in such a case is a mechanism to search through the space of possi­
ble arm configurations, recording the successful configurations associated with the
various inputs. ALVIS - Associative Learning Via Inhibitory Search - provides
one such mechanism. The next section applies backpropagation to the 9 --+ X map­
ping and shows how the resulting network can sometimes be used to solve X --+ 9
problems. The third section, "Self-supervision and inhibitory search," integrates
that network into the overall ALVIS algorithm. The final section contains some
discussion and conclusions. An expanded version of this paper may be found in
Ackley (1988).

FORWARD AND INVERSE KINEMATICS

The in verse kinematics problem in controlling an arm is the problem of determining
what joint angles are needed to produce a specific position and orientation of a hand.
In the general case it is a difficult problem. An itch on your back suggests the kinds
of questions that arise. Which hand should you use? Should you go up from around
your waist, or down from over your shoulders? Can you be sure you know what
will work without actually trying it?

From a computational standpoint, forward kinematics - deciding where your limbs
will end up given a set of joint angles - is an easier problem.

Figure 1 depicts the planar "robot" that was used in this work. I call it the "trunk"
robot. (The work discussed in Ackley (1988) also used a two-handed "pincer"
robot .) Of course, the trunk is a far cry from a real robot, and the only significant
constraint is that the possible joint angles are limited, but this suffices to pose
non-trivial kinematics problems. The trunk has five joints, and each joint angle is
limited to a range of 40 to 1760 with respect to the previous limb.

I simulated a backpropagation network with five real-valued input units (the joint
angles), sixty hidden units in a single layer, and twelve linear output units (the
Cartesian joint positions). Joint angles were expressed in radians, so the range of
input unit values was from about 0.07 to about 3.07. The configuration vector X
was represented by twelve output units corresponding to six pairs of (x, y) coordi-

22 Ackley

Figure 2. A "logarithmic strobe" display of the trunk's asymptotic convergence on
a specified position and orientation. The arm position is displayed after iterations
1,2,4,8, ... ,256.

nates, one pair for each joint a through f. With the trunk robot (though not with
the "pincer") f:e and fy have constant values, since they end up being part of the
"anchor." The state of an output unit equals the sum of its inputs, and the error
propagated out of an output unit equals the error propagated into it.

Errors were defined by the difference between the predicted configuration and the
actual configuration, and after extensive training on the trunk robot forward kine­
matics problem, the network achieved high accuracy over most of the joint ranges.

In typical backpropagation applications, once the desired mapping has been learned,
the backward "error channels" in the network are no longer used. However, suppose
some other error computation, different from that used to train the weights, was
then incorporated. Those errors can be propagated from the outputs of the trained
network all the way back to the inputs. The goal is no longer to change weights
in the network - since they already represent a useful mapping - but to use the
trained network to translate output-space errors, however defined, into errors at
the inputs to the network.

Figure 2 illustrates one use of this process, showing how a trained forward kine­
matics network can be used to perform a cheap kind of inverse kinematics. The
figure shows superimposed outputs of the trained network under the influence of
a task-specific error computationj in this case the trunk is trying to reduce the
distances between the front and back of a "target arrow" and the front and back
of its first arm section. The target arrow is defined by a head (h:e, hy) and a tail
(t:e, ty). The errors for output units a:e and ay are defined by e(a:e} = h:e - a:e and
e(ay) = hy-ay, the errors for output units b:e and by are defined by e(b:e) = t:e-b:e
and e(by) = ty - by, and the errors at all other outputs are set to zero.

The algorithm used to generate this behavior has the following steps:

1. Compute errors for one or more output units based on the current positions
of the joints and the desired positioning and orienting information. If "close

Associative Learning via Inhibitory Search 23

o

Figure 3. The trunk kinking itself.

enough" to the target, exit, otherwise, store these errors on the selected
output units, and set the other error terms to zero.

2. Backpropagate the errors all the way through the network to the input
units. This produces an error term e(9i) for each joint angle 9i. Produce
new joint angles: 9~ = 9i + ke(9i) where k is a scaling constant. Clip the
joint angles against their minimum and maximum values.

3. Forward propagate through the network based on the new joint angles, to
produce new current positions for the joints. Go to step 1.

Whereas the training phase has forward propagation of activations (states) followed
by back propagation of errors, this usage reverses the order. Backpropagation of
errors is followed by changes in inputs followed by forward propagation of activa­
tions. This is a general gradient descent technique usable when a backpropagation
network can learn to map from a control space 9 to an error or evaluation space X.

Figure 3 illustrates how gradient descent's familiar limitation can manifest itself:
The target is reachable but the robot fails to reach it. The initial configuration
was such that while approaching the target, the trunk kinked itself too short to
reach. If the robot had "thought" to open 93 instead of closing it, it could have
succeeded. In that sense, the problem arises because the error computation only
specified errors for the tip of the trunk, and not for the rest of the arm. If, instead,
there were indications where all of the joints were to be placed, failures due to local
minima could be greatly reduced.

SELF-SUPERVISION AND INHIBITORY SEARCH

The feedback control network of the previous section locally minimizes joint position
errors - however they are generated - by translating them into joint angle space
and moving downhill. AL VIS uses the feedback control network for arm control;
this section shows how ALVIS learns to generate appropriate joint position space
errors given only a reinforcement signal. There are two key points. The first is
this: Once an action producing a positive reinforcement has somehow been found,

24 Ackley

the problem reduces to associative mapping between the input and the discovered
correct output. In ALVIS, "do-be units" are used to record such successes. The
second point is this: When negative reinforcement occurs, the current configuration
can be associated with the input in a behavior-reversed fashion - as a place to
avoid in the future. In ALVIS, "don't-be units" are used to record such failures.

The overall idea, then, is to perform inhibitory search by remembering failures as
they occur and avoiding them in the future, and to perform associative learning
by remembering successful configurations as the search process uncovers them and
recreating them in the future. In effect, ALVIS constructs input-dependent "attrac­
tors" at arm configurations associated with success and "repellors" at configurations
associated with failure. Figure 4 summarizes the algorithm. A few points to note
are these:

• The do-be and don't-be units use the spherical non-linear function explored by
Burr & Hanson (1987). The response of a spherical unit is maximal and equal to
one when the input vector and the weight vector are identical. The response of
the unit decreases monotonically with the Euclidean distance between the two
vectors, and the radius r governs the rate of decay.

• The don't-be units of each subnetwork (i.e., relevant to one goal) are in a com­
petitive network (see, e.g., Feldman 1982). The don't-be unit with the largest
activation value (which is a function of both the distance from the current posi­
tion and the radius) is the only don't-be unit that has effects on the rest of the
system. In the simulations reported here, I used m = 4 don't-be units per goal.

• In addition to the parameters associated with spherical units, each do-be and
don't-be unit has a strength parameter a that specifies how much influence the
unit has over the behavior of the arm. Do-be strength (at) grows logarithmi­
cally with positive reinforcement and shrinks linearly with negative; don't-be
strength (a;i) grows logarithmically with negative reinforcement and shrinks lin­
early with positive.

Figure 5 illustrates a situation from early in a run of the system. From left to right,
the three displays show the state of the relevant do-be unit, the relevant don't-be
subnetwork, and the current configuration of the arm. Since this particular goal
has never been achieved before, the do-be map provides no useful information -
its weight vector contains small random values (as it happens, the origin is below
and right of the display) and its strength is zero. The display of the don't-be map
shows the positions of all four relevant don't-be units, with the currently selected
don't-be (unit number 3) drawn somewhat darker. The don't-be units are spread
around configuration space, creating "hills" that push away the arm if it comes
too close. As the arm moves about without reaching the target, different don't-be
units win the competition and take control. Negative reinforcement accrues, and
the winning don't-be consequently moves toward the various current configurations
and gets stronger, until the arm is pushed elsewhere.

Figure 6 illustrates the behavior of the system after more extensive learning. The

Associative Learning via Inhibitory Search 25

Figure 4. AL VIS

O. (Initialize) Given: a space X of h dimensions, a backpropagation network
trained on 8 -+ X, a set G of goals and a mapping from G to regions of
space. Create an AL VIS network with n = IGI goal units 91, ... ,9n, n do­
be/don't-be subnetworks consisting of one do-be unit dt and m don't-be
units dii, ... , dfu., and h current position units ZI,'" Zh. Create modi­
fiable connections Wzi from z's to d's, Wiz from d's to z's, and a modi­
fiable strength s for each d. Set all do-be strengths st and all don't-be
strengths sti to zero. Set all weights Wzi and Wiz to small random values.
Set 8 to a random legal vector and produce a current configuration X.

1. (New stimulus) Choose t at random from 1 ... n.

2. (Do's/Don'ts) Compute activations for do-be's and don't-be's using the

spherical function: d = 1/ (1 + ~JL./:=1 (Zi - wz il2). In subnetwork t,

let dt: be the unit with the largest activation.

3. (Errors) Let wt denote the weights from dt and w~ denote the weights
from dt:, and similarly for strengths st and st:. Compute errors for each
component of X: e(zi) = si(wt - Zi) + Si:.(Zi - w~).

4. (Move) Backpropagate to produce e(8). Generate angle changes: A8i =
min(q, max(-q, k,.e(8i))), with parameters q and k,.. Generate new an­
gles respecting the maximum vt and minimum vi possible joint angles:
8~ = min(vt, max(vi ,8i + A8i)). Forward propagate to produce a new
configuration X'.

5. (Positive reinforcement) Determine whether X' satisfies goal t. If it does
not, go to step 6. Otherwise,

5 1 t;\ • - 1 hIt +, - I d +, - I . ror 1 - , ••• , , e wiz - zi an wzi - zi'
5.2 Let st' = min (5, si + p+ / (1 + si)), for positive reinf p+ > O.
5.3 Let ri = k,/ max(.I, st'), with parameter k,.
5.4 For i = 1, ... , m, let Sti' = max(O, sti-p+), and rti = k,f max(.I, sti'l.
5.5 Go to step 1.

6. (Negative reinforcement) Perform the following:
6.1 For i = 1, ... , h, let wi: = w~ + 77(zi - w~) and w;/ = w;i + e +

77(Z; - w~) with parameter 77, where e is a uniform random variable
between ±O.O1.

6.2 Let S;:' = min (5, s;: + p- / (1 + s;:)), for negative reinf p- > O.
6.3 Let rt = k,/ max (.1, S;:').
6.4 Let st' = max(O, si - p-), and ri = k,/ max(O.I, Si'l.
6.5 Go to step 2.

26 Ackley

~~~Be~:~0~.~00~O~OO~0 ___________ I_D_on_'_t_~~:_3~1~.~29~4~70~3 ________ I_B~e ____________________ 1 

Figure 5. A display of the internal state of the trunk robot in the process of 
learning to associate a set of twelve arbitrary stimuli with specified positions in 
space. The current signal (though the system has not discovered this yet) means 
"touch 5". 

Do Be: 4.998667 Don't Be: 3 0.007976 Be 
~~~~~~----------I~~~~~~---------

Figure 6. A display of the internal state of the same trunk robot later in the
learning process. The previous goal was "touch *" and the current goal is "touch
3."

\ do-be map now contains an accurate image of a successful configuration for the
"touch 3" goal, and its strength is high. The strength of the selected don't-be
unit is low. The current configuration map in Figure 6 shows each iteration of the
algorithm between the time it achieved its previous goal and the time it achieved
the current goal.

Finally, Figure 7 displays the average time-per-goal as a function of the number of
goals achieved. For 75 repetitions, the trunk network was initialized and run until
500 goals had been achieved, and the resulting time-per-goal data was averaged to
produce the graph.

The average time-per-goal declines rapidly as goals are presented, then seems to
rise slightly, and then stabilizes around an average value of about 300. To have
some kind of standard of comparison, albeit unsophisticated, if the joint angles are
simply changed by uniform random values between q and -q (see Figure 4) on each
iteration, the average time-per-goal is observed to be about 490.

Associative Learning via Inhibitory Search 27

:nOD

24DO

2100

liDO

15DD

1200

900

600

300

Figure 7. A graph of the average time taken per goal as a function of the number
of goals achieved. The horizontal line shows the average performance of random
joint changes.

DISCUSSION

ALVIS is a preliminary, exploratory system. Of course, the ALVIS environment
is but a pale shadow of the real world, but even granting the limited scope of the
problem formulation, several aspects of AL VIS are incompletely satisfying and in
need of improvement.

To my eye, the biggest drawback of the current implementation is the local goal
representation - which essentially requires that the set of goals be enumerable at
network definition time. Related problems include the inability to share information
between one goal and another and the inability to pursue more than one goal
simultaneously. To determine behavior, the constraints of goals must be integrated
with the possibilities of the current situation. In AL VIS this is done as a strictly
two-step process: the goal selects a subnetwork, and the current situation selects
units within the subnetwork. Work such as Jordan (1986) and Miyata (1988) shows
how goal information and context information can be integrated by supplying both
as inputs to a single network.

ALVIS is a pure feedback control model, and can suffer from the traditional problem
of that approach: when the errors are small, the resulting joint angle changes are
small, and the arm converges only slowly. If the gain at the joints is increased
to speed con vergence, overshoot and oscillation become more likely. However, in
ALVIS oscillations gradually die out, as don't-be units shift positions under the
negative reinforcement, and sometimes such temporary oscillations actually help
with the search, causing the tip of the arm to explore a variety of different points.

28 Ackley

The aspect of AL VIS behavior that I find most irritating reveals something about
the approach in general. In some cases - usually on more "peripheral" targets
- AL VIS learns to hit the very edge of the target region. While approaching
such targets, ALVIS experiences negative reinforcement, and the don't-be units,
consequently, gain a little strength. The resulting interference occasionally causes
a very long search for a goal that had previously been rapidly achieved. AL VIS
has a representation only for its own body; a better system would also be able to
represent other objects in the world, and useful relations on the expanded set. The
"mostly motor" emphasis evident in the present system needs to be balanced by
more sophistication on the perceptual side.

Though limited in scope, ALVIS demonstrates three ideas I think worth highlight­
mg:

• The reuse of the error channel of a backpropagation network, after training, for
translating arbitrary output-space gradients into input-space gradients.

• The recording of previous actual outputs to be used as future desired outputs.

• The use of "repellors" (don 't-be units) as well as attractors in defining errors, and
the resulting process of search-by-inhibition generated by negative reinforcement.

Characterizing the behavior of a machine in terms of attractor dynamics is a familiar
notion, but "repellor dynamics" seems to be largely unknown territory. Indeed, in
ALVIS there is an ephemeral quality to the don't-be units: When all answers have
been discovered, all strength accrues to the do-be's, good performances become
routine, and AL VIS behavior is essentially attractor-based. In watching such a
"grown-up" AL VIS, it is easy to forget how it was in the beginning, when the world
was big and answers were scarce, and ALVIS was doing well just to discover a new
mistake.

References

Ackley, D.H. (1988). Associative learning via inhibitory search. Teclmical memorandum TM
ARH-012509. Morristown. NJ: Bell Communications Research.

Burr. D.J .• & Hanson. S.J. (1987). Knowledge representation in connectionist networks. Technical
memorandum TM-ARH-008733. Morristown. NJ: Bell Communications Research.

Feldman. J.A. (1982). Dynamic connections in neural networks. Biological Cybernetics, 36, 193-
202.

Jordan. M.1. (1986). Serial order: A parallel. distributed processing approach. Technical report
ICS-86M. La Jolla, CA: University of California. Institute for Cognitive Science.

Miyata, Y. (1988). The learning and planning of actions. Unpublished doctoral dissertation in
psychology, University of California San Diego.

Rumelhart, D.E .• Hinton. G.E .• & Williams. R.J. (1986). Learning representations by back­
propagating errors. Nature, 3Z3. 533-536.

Rumelhart. D.E. (personal communication. 1987). Also cited as personal communication in Miy­
ata (1988).

