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ABSTRACT 

ALVIS is a reinforcement-based connectionist architecture that 
learns associative maps in continuous multidimensional environ­
ments. The discovered locations of positive and negative rein­
forcements are recorded in "do be" and "don't be" subnetworks, 
respectively. The outputs of the subnetworks relevant to the cur­
rent goal are combined and compared with the current location to 
produce an error vector. This vector is backpropagated through 
a motor-perceptual mapping network. to produce an action vec­
tor that leads the system towards do-be locations and away from 
don 't-be locations. AL VIS is demonstrated with a simulated robot 
posed a target-seeking task. 

INTRODUCTION 

The "backpropagation algorithm" or generalized delta rule (Rumelhart, Hinton, & 
Williams, 1986) is sometimes criticized on the grounds that it is a "supervised" 
learning algorithm, which requires a "teacher" to provide correct outputs, and 
apparently leaves open the question of how the teacher learned the right answers. 
However, work. by Rumelhart (personal communication, 1987) and Miyata (1988) 
has shown how the environment that a system is embedded in can serve as the 
"teacher." If, as in this paper, a backpropagation network is posed the task of 
mapping from a vector 9 of robot arm joint angles to the resulting vector X of 
arm coordinates in space (the "forward kinematics problem"), then input-output 
training data can be obtained by supplying sets of joint angles to the arm and 
observing the resulting configurations. 

Although this "environment as teacher" strategy shows how a "teacher" can come to 
possess useful information without an infinite regress learning it, it is not a complete 
solution. There are problems for which the "laws of physics" of an environment 
do not suffice to determine the solution. Suppose, for example, that a robot is 
posed the problem of learning to reach for different positions in space depending 
on which of a set of signals is currently presented, and that the only feedback 
available from the environment is success or failure information about the current 
arm configuration. 
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Figure 1. A "trunk" robot. 

What is needed in such a case is a mechanism to search through the space of possi­
ble arm configurations, recording the successful configurations associated with the 
various inputs. ALVIS - Associative Learning Via Inhibitory Search - provides 
one such mechanism. The next section applies backpropagation to the 9 --+ X map­
ping and shows how the resulting network can sometimes be used to solve X --+ 9 
problems. The third section, "Self-supervision and inhibitory search," integrates 
that network into the overall ALVIS algorithm. The final section contains some 
discussion and conclusions. An expanded version of this paper may be found in 
Ackley (1988). 

FORWARD AND INVERSE KINEMATICS 

The in verse kinematics problem in controlling an arm is the problem of determining 
what joint angles are needed to produce a specific position and orientation of a hand. 
In the general case it is a difficult problem. An itch on your back suggests the kinds 
of questions that arise. Which hand should you use? Should you go up from around 
your waist, or down from over your shoulders? Can you be sure you know what 
will work without actually trying it? 

From a computational standpoint, forward kinematics - deciding where your limbs 
will end up given a set of joint angles - is an easier problem. 

Figure 1 depicts the planar "robot" that was used in this work. I call it the "trunk" 
robot. (The work discussed in Ackley (1988) also used a two-handed "pincer" 
robot .) Of course, the trunk is a far cry from a real robot, and the only significant 
constraint is that the possible joint angles are limited, but this suffices to pose 
non-trivial kinematics problems. The trunk has five joints, and each joint angle is 
limited to a range of 40 to 1760 with respect to the previous limb. 

I simulated a backpropagation network with five real-valued input units (the joint 
angles), sixty hidden units in a single layer, and twelve linear output units (the 
Cartesian joint positions). Joint angles were expressed in radians, so the range of 
input unit values was from about 0.07 to about 3.07. The configuration vector X 
was represented by twelve output units corresponding to six pairs of (x, y) coordi-
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Figure 2. A "logarithmic strobe" display of the trunk's asymptotic convergence on 
a specified position and orientation. The arm position is displayed after iterations 
1,2,4,8, ... ,256. 

nates, one pair for each joint a through f. With the trunk robot (though not with 
the "pincer") f:e and fy have constant values, since they end up being part of the 
"anchor." The state of an output unit equals the sum of its inputs, and the error 
propagated out of an output unit equals the error propagated into it. 

Errors were defined by the difference between the predicted configuration and the 
actual configuration, and after extensive training on the trunk robot forward kine­
matics problem, the network achieved high accuracy over most of the joint ranges. 

In typical backpropagation applications, once the desired mapping has been learned, 
the backward "error channels" in the network are no longer used. However, suppose 
some other error computation, different from that used to train the weights, was 
then incorporated. Those errors can be propagated from the outputs of the trained 
network all the way back to the inputs. The goal is no longer to change weights 
in the network - since they already represent a useful mapping - but to use the 
trained network to translate output-space errors, however defined, into errors at 
the inputs to the network. 

Figure 2 illustrates one use of this process, showing how a trained forward kine­
matics network can be used to perform a cheap kind of inverse kinematics. The 
figure shows superimposed outputs of the trained network under the influence of 
a task-specific error computationj in this case the trunk is trying to reduce the 
distances between the front and back of a "target arrow" and the front and back 
of its first arm section. The target arrow is defined by a head (h:e, hy) and a tail 
(t:e, ty). The errors for output units a:e and ay are defined by e(a:e} = h:e - a:e and 
e(ay) = hy-ay, the errors for output units b:e and by are defined by e(b:e) = t:e-b:e 
and e(by) = ty - by, and the errors at all other outputs are set to zero. 

The algorithm used to generate this behavior has the following steps: 

1. Compute errors for one or more output units based on the current positions 
of the joints and the desired positioning and orienting information. If "close 
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Figure 3. The trunk kinking itself. 

enough" to the target, exit, otherwise, store these errors on the selected 
output units, and set the other error terms to zero. 

2. Backpropagate the errors all the way through the network to the input 
units. This produces an error term e(9i) for each joint angle 9i. Produce 
new joint angles: 9~ = 9i + ke(9i) where k is a scaling constant. Clip the 
joint angles against their minimum and maximum values. 

3. Forward propagate through the network based on the new joint angles, to 
produce new current positions for the joints. Go to step 1. 

Whereas the training phase has forward propagation of activations (states) followed 
by back propagation of errors, this usage reverses the order. Backpropagation of 
errors is followed by changes in inputs followed by forward propagation of activa­
tions. This is a general gradient descent technique usable when a backpropagation 
network can learn to map from a control space 9 to an error or evaluation space X. 

Figure 3 illustrates how gradient descent's familiar limitation can manifest itself: 
The target is reachable but the robot fails to reach it. The initial configuration 
was such that while approaching the target, the trunk kinked itself too short to 
reach. If the robot had "thought" to open 93 instead of closing it, it could have 
succeeded. In that sense, the problem arises because the error computation only 
specified errors for the tip of the trunk, and not for the rest of the arm. If, instead, 
there were indications where all of the joints were to be placed, failures due to local 
minima could be greatly reduced. 

SELF-SUPERVISION AND INHIBITORY SEARCH 

The feedback control network of the previous section locally minimizes joint position 
errors - however they are generated - by translating them into joint angle space 
and moving downhill. AL VIS uses the feedback control network for arm control; 
this section shows how ALVIS learns to generate appropriate joint position space 
errors given only a reinforcement signal. There are two key points. The first is 
this: Once an action producing a positive reinforcement has somehow been found, 
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the problem reduces to associative mapping between the input and the discovered 
correct output. In ALVIS, "do-be units" are used to record such successes. The 
second point is this: When negative reinforcement occurs, the current configuration 
can be associated with the input in a behavior-reversed fashion - as a place to 
avoid in the future. In ALVIS, "don't-be units" are used to record such failures. 

The overall idea, then, is to perform inhibitory search by remembering failures as 
they occur and avoiding them in the future, and to perform associative learning 
by remembering successful configurations as the search process uncovers them and 
recreating them in the future. In effect, ALVIS constructs input-dependent "attrac­
tors" at arm configurations associated with success and "repellors" at configurations 
associated with failure. Figure 4 summarizes the algorithm. A few points to note 
are these: 

• The do-be and don't-be units use the spherical non-linear function explored by 
Burr & Hanson (1987). The response of a spherical unit is maximal and equal to 
one when the input vector and the weight vector are identical. The response of 
the unit decreases monotonically with the Euclidean distance between the two 
vectors, and the radius r governs the rate of decay. 

• The don't-be units of each subnetwork (i.e., relevant to one goal) are in a com­
petitive network (see, e.g., Feldman 1982). The don't-be unit with the largest 
activation value (which is a function of both the distance from the current posi­
tion and the radius) is the only don't-be unit that has effects on the rest of the 
system. In the simulations reported here, I used m = 4 don't-be units per goal. 

• In addition to the parameters associated with spherical units, each do-be and 
don't-be unit has a strength parameter a that specifies how much influence the 
unit has over the behavior of the arm. Do-be strength (at) grows logarithmi­
cally with positive reinforcement and shrinks linearly with negative; don't-be 
strength (a;i) grows logarithmically with negative reinforcement and shrinks lin­
early with positive. 

Figure 5 illustrates a situation from early in a run of the system. From left to right, 
the three displays show the state of the relevant do-be unit, the relevant don't-be 
subnetwork, and the current configuration of the arm. Since this particular goal 
has never been achieved before, the do-be map provides no useful information -
its weight vector contains small random values (as it happens, the origin is below 
and right of the display) and its strength is zero. The display of the don't-be map 
shows the positions of all four relevant don't-be units, with the currently selected 
don't-be (unit number 3) drawn somewhat darker. The don't-be units are spread 
around configuration space, creating "hills" that push away the arm if it comes 
too close. As the arm moves about without reaching the target, different don't-be 
units win the competition and take control. Negative reinforcement accrues, and 
the winning don't-be consequently moves toward the various current configurations 
and gets stronger, until the arm is pushed elsewhere. 

Figure 6 illustrates the behavior of the system after more extensive learning. The 
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Figure 4. AL VIS 

O. (Initialize) Given: a space X of h dimensions, a backpropagation network 
trained on 8 -+ X, a set G of goals and a mapping from G to regions of 
space. Create an AL VIS network with n = IGI goal units 91, ... ,9n, n do­
be/don't-be subnetworks consisting of one do-be unit dt and m don't-be 
units dii, ... , dfu., and h current position units ZI,'" Zh. Create modi­
fiable connections Wzi from z's to d's, Wiz from d's to z's, and a modi­
fiable strength s for each d. Set all do-be strengths st and all don't-be 
strengths sti to zero. Set all weights Wzi and Wiz to small random values. 
Set 8 to a random legal vector and produce a current configuration X. 

1. (New stimulus) Choose t at random from 1 ... n. 

2. (Do's/Don'ts) Compute activations for do-be's and don't-be's using the 

spherical function: d = 1/ (1 + ~JL./:=1 (Zi - wz il2). In subnetwork t, 

let dt: be the unit with the largest activation. 

3. (Errors) Let wt denote the weights from dt and w~ denote the weights 
from dt:, and similarly for strengths st and st:. Compute errors for each 
component of X: e(zi) = si(wt - Zi) + Si:.(Zi - w~). 

4. (Move) Backpropagate to produce e(8). Generate angle changes: A8i = 
min(q, max( -q, k,.e(8i ))), with parameters q and k,.. Generate new an­
gles respecting the maximum vt and minimum vi possible joint angles: 
8~ = min( vt, max(vi ,8i + A8i )). Forward propagate to produce a new 
configuration X'. 

5. (Positive reinforcement) Determine whether X' satisfies goal t. If it does 
not, go to step 6. Otherwise, 

5 1 t;\ • - 1 hIt +, - I d +, - I . ror 1 - , ••• , , e wiz - zi an wzi - zi' 
5.2 Let st' = min (5, si + p+ / (1 + si)), for positive reinf p+ > O. 
5.3 Let ri = k,/ max(.I, st'), with parameter k,. 
5.4 For i = 1, ... , m, let Sti' = max(O, sti-p+), and rti = k,f max(.I, sti'l. 
5.5 Go to step 1. 

6. (Negative reinforcement) Perform the following: 
6.1 For i = 1, ... , h, let wi: = w~ + 77(zi - w~) and w;/ = w;i + e + 

77(Z; - w~) with parameter 77, where e is a uniform random variable 
between ±O.O1. 

6.2 Let S;:' = min (5, s;: + p- / (1 + s;:)), for negative reinf p- > O. 
6.3 Let rt = k,/ max ( .1, S;:'). 
6.4 Let st' = max(O, si - p-), and ri = k,/ max(O.I, Si'l. 
6.5 Go to step 2. 
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Figure 5. A display of the internal state of the trunk robot in the process of 
learning to associate a set of twelve arbitrary stimuli with specified positions in 
space. The current signal (though the system has not discovered this yet) means 
"touch 5". 

Do Be: 4.998667 Don't Be: 3 0.007976 Be 
~~~~~~----------I~~~~~~---------

Figure 6. A display of the internal state of the same trunk robot later in the 
learning process. The previous goal was "touch *" and the current goal is "touch 
3." 

\ do-be map now contains an accurate image of a successful configuration for the 
"touch 3" goal, and its strength is high. The strength of the selected don't-be 
unit is low. The current configuration map in Figure 6 shows each iteration of the 
algorithm between the time it achieved its previous goal and the time it achieved 
the current goal. 

Finally, Figure 7 displays the average time-per-goal as a function of the number of 
goals achieved. For 75 repetitions, the trunk network was initialized and run until 
500 goals had been achieved, and the resulting time-per-goal data was averaged to 
produce the graph. 

The average time-per-goal declines rapidly as goals are presented, then seems to 
rise slightly, and then stabilizes around an average value of about 300. To have 
some kind of standard of comparison, albeit unsophisticated, if the joint angles are 
simply changed by uniform random values between q and -q (see Figure 4) on each 
iteration, the average time-per-goal is observed to be about 490. 
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Figure 7. A graph of the average time taken per goal as a function of the number 
of goals achieved. The horizontal line shows the average performance of random 
joint changes. 

DISCUSSION 

ALVIS is a preliminary, exploratory system. Of course, the ALVIS environment 
is but a pale shadow of the real world, but even granting the limited scope of the 
problem formulation, several aspects of AL VIS are incompletely satisfying and in 
need of improvement. 

To my eye, the biggest drawback of the current implementation is the local goal 
representation - which essentially requires that the set of goals be enumerable at 
network definition time. Related problems include the inability to share information 
between one goal and another and the inability to pursue more than one goal 
simultaneously. To determine behavior, the constraints of goals must be integrated 
with the possibilities of the current situation. In AL VIS this is done as a strictly 
two-step process: the goal selects a subnetwork, and the current situation selects 
units within the subnetwork. Work such as Jordan (1986) and Miyata (1988) shows 
how goal information and context information can be integrated by supplying both 
as inputs to a single network. 

ALVIS is a pure feedback control model, and can suffer from the traditional problem 
of that approach: when the errors are small, the resulting joint angle changes are 
small, and the arm converges only slowly. If the gain at the joints is increased 
to speed con vergence, overshoot and oscillation become more likely. However, in 
ALVIS oscillations gradually die out, as don't-be units shift positions under the 
negative reinforcement, and sometimes such temporary oscillations actually help 
with the search, causing the tip of the arm to explore a variety of different points. 
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The aspect of AL VIS behavior that I find most irritating reveals something about 
the approach in general. In some cases - usually on more "peripheral" targets 
- AL VIS learns to hit the very edge of the target region. While approaching 
such targets, ALVIS experiences negative reinforcement, and the don't-be units, 
consequently, gain a little strength. The resulting interference occasionally causes 
a very long search for a goal that had previously been rapidly achieved. AL VIS 
has a representation only for its own body; a better system would also be able to 
represent other objects in the world, and useful relations on the expanded set. The 
"mostly motor" emphasis evident in the present system needs to be balanced by 
more sophistication on the perceptual side. 

Though limited in scope, ALVIS demonstrates three ideas I think worth highlight­
mg: 

• The reuse of the error channel of a backpropagation network, after training, for 
translating arbitrary output-space gradients into input-space gradients. 

• The recording of previous actual outputs to be used as future desired outputs. 

• The use of "repellors" (don 't-be units) as well as attractors in defining errors, and 
the resulting process of search-by-inhibition generated by negative reinforcement. 

Characterizing the behavior of a machine in terms of attractor dynamics is a familiar 
notion, but "repellor dynamics" seems to be largely unknown territory. Indeed, in 
ALVIS there is an ephemeral quality to the don't-be units: When all answers have 
been discovered, all strength accrues to the do-be's, good performances become 
routine, and AL VIS behavior is essentially attractor-based. In watching such a 
"grown-up" AL VIS, it is easy to forget how it was in the beginning, when the world 
was big and answers were scarce, and ALVIS was doing well just to discover a new 
mistake. 
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