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Performance of a Stochastic Learning Microchip 

• Joshua Alspector, Bhusan Gupta, and Robert B. Allen 
Bellcore, Morristown, NJ 07960 

We have fabricated a test chip in 2 micron CMOS that can perform supervised 
learning in a manner similar to the Boltzmann machine. Patterns can be 
presented to it at 100,000 per second. The chip learns to solve the XOR 
problem in a few milliseconds. We also have demonstrated the capability to 
do unsupervised competitive learning with it. The functions of the chip 
components are examined and the performance is assessed. 

1. INTRODUCTION 

In previous work,(l] (2] we have pointed out the importance of a local learning rule, 
feedback connections, and stochastic elements(3] for making learning models that are 
electronically implementable. We have fabricated a test chip in 2 micron CMOS 
technology that embodies these ideas and we report our evaluation of the microchip and 
our plans for improvements. 

Knowledge is encoded in the test chip by presenting digital patterns to it that are 
examples of a desired input-output Boolean mapping. This knowledge is learned and 
stored entirely on chip in a digitally controlled synapse-like element in the form of 
connection strengths between neuron-like elements. The only portion of this learning 
system which is off chip is the VLSI test equipment used to present the patterns. 

This learning system uses a modified Boltzmann machine algorithm[3] which, if 
simulated on a serial digital computer, takes enormous amounts of computer time. Our 
physical implementation is about 100,000 times faster. The test chip, if expanded to a 
board-level system of thousands of neurons, would be an appropriate architecture for 
solving artificial intelligence problems whose solutions are hard to specify using a 
conventional rule-based approach. Examples include speech and pattern recognition and 
encoding some types of expert knowledge. 

2. CIllP COMPONENTS 
I 

Fig. 1 is a photograph of the silicon chip. It contains various test structures, the largest of 
which. in the lower left, is a neural-style learning network composed of 6 neurons, each 
with its own noise amplifier, and 15 bidirectional synapses which potentially allow the 
network to be fully connected. In order to study these components separately, there is a 
also a noise amplifier in the upper left comer of the chip, a neuron in the upper right, and 
2 synapses in the lower right. 

• Pennanent address: University of California, Berkeley; EE Dep't, Cory Hall; Berkeley, CA 94720 



• ,-- -
.. 

Performance of a Stochastic Learning Microchip 749 

- --
H .. • I _____ ~_J 

Figure 1. Photograph of Test Chip Containing a Learning Network in Lower Left. 

2.1 Neuron 

The electronic neuron perfonns the physical computation: 

activation=/ (LWjj sj+noise )=/ (gain*netj) 

where / is a monotonic non-linear function such as tanh. In some of our computer 
simulations this is a step function corresponding to a high value of gain. The signal from 
other neurons to neuron i is the sum of neural states Sj giving input weighted by the 
connection strengths Wjj, while the noise simulates a temperature in a physical 
thermodynamic system. Their sum is the effective net input netj . 

The model neuron is a double differential amplifier as shown in Fig. 2. Noise and signal 
have separate differential inputs and are summed at low gain. The differential outputs of 
this summing stage are converted to a single output by a high gain stage before being fed 
into a switching arrangement. This selects either the net input or an external clamping 
signal which forces the neuron into a desired state. The output of the switch is then 
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Figure 2. Circuitry of Electronic Analog Neuron. 

further amplified before driving the network. The final output approximates a two-state 
binary neuron. 

2.2 Noise amplifier 

anneal 
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Figure 3. Block Diagram of Noise Amplifier. 
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Fig. 3 is a block diagram of the noise amplifier. The original idea was to amplify the 
thermal noise in the channel of a transistor with a gain of nearly a million but to stabilize 
the de output using low pass negative feedback in 3 stages. By controlling the feedback. 
one could control both the bandpass of the noise signal as well as the gain to provide for 
annealin$ the temperature (amount of noise) as required by the Boltzmann machine 
algorithm. (3) Unfortunately this amplifier proved unstable at high gain values leading to 
oscillations of a few MHz which were highly correlated among all the noise amplifiers in 
the network. In spite of this undesirable correlation in the noise signals. the network was 
still able to learn (see section 3). Rather than a slow "annealing". we used a rapid 
"heating" and "flash freezing" of the network to randomize· it. This was done by 
momentarily -opening a "noise on" switch during the time allotted for annealing. 
Learning was also demonstrated by clamping the free running neurons momentarily to a 
pseudo-random state and then releasing them to allow the network to settle. 

2.3 Synapse 

Fig. 4 is a block diagram of the digitally controlled electronic synapse. The weights are 
stored as a sign and four bits of magnitude in five flip-flops arranged as an up-down 
counter. The correlation logic tests whether the two neurons that the synapse connects 
have the same binary state (correlated) or not at the end of the anneal cycle. If the 
neurons are correlated in the "teacher" phase (when the teacher is clamping the output 
neurons in the correct state) and not in the "student" phase (when the output neurons are 
running free). then a signal to the counter increments the weight by one. If the reverse is 
true. the counter is decremented. If the "teacher" and "student" phase have the same 
correlation. no change is made. 
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Figure 4. Block Diagram of Synapse. 
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The digital weight is converted to an analog conductance by a set of pass transistors with 
graduated binary conductance ratios. Measurements confirmed that the synapse 
conductance increased monotonically from a value of -15 though +15 as the counter was 
incremented. The -0 value, when loaded into the synapse, disconnected that link. We 
usually initialized all the weights to +0 before learning. 

3. PERFORMANCE EVALUATION OF NETWORK 

3.1 XOR tests 

The most difficult test for our 6 neuron network was to have it learn the exclusive-OR 
function. The network was arranged with 2 input neurons, 2 hidden neurons, and 1 
output neuron as shown in Fig. 5. There is also a so-called 'true' neuron which is always 
clamped on. The negative of the weights from that neuron provide the threshold for the 
other neurons. The exclusive-OR function is of historical interest because the neural 
models of the 1960's could not learn it.[4] [5] This is because those learning algorithms did 
not work when there was a layer of hidden neurons. Networks with only a single layer of 
modifiable weights could learn the logical OR function but not the exclusive-OR (XOR). 
The truth table in Fig. 5 shows that the XOR is 1 (on or true) when either one of the two 
inputs is 1, but not when both are 1. However, recent algorithms such as the Boltzmann 
machine are able to learn with a hidden layer and hence can solve the XOR. 
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Figure 5. 2-2-1 Network to Learn XOR. 

To teach a network to be an XOR, we start with a blank slate where all the weights are 
zero and then present the patterns of 1 's and O's in the figure with the teacher~dtemately 
clamping the output to the correct state and letting it run free. On each presentation, the 
network is jittered by noise and correlations are counted by each synapse. At the end of 
each teacher-student cycle, weights are adjusted. 
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Tests of the chip were conducted using an HP 8180A data generator to present digital 
patterns to the chip, an HP 8182 data analyzer to capture the chip's digital outputs, and 
an HP 54112A digitizing oscilloscope to capture wavefonns. Analog wavefonns were 
generated using an HP 8770A arbitrary wavefonn synthesizer feeding a Comlinear E20 1 I 
amplifier. These instruments were controlled by an HP 9836 computer running UNIX 
with test programs written in C. 

A pattern presentation phase consisted of five subphases and hence five clock cycles of 
the data generator. The input and/or output pattern to be presented to the clamped 
neurons is present during all five cycles. The first cycle presents noise or an annealing 
wavefonn to the network. The second cycle sends a signal to each synapse to count 
correlations. The fourth cycle can be used to send a signal to each synapse to adjust 
weights. This is usually done only after two 5 cycle phases, one for the "teacher" phase 
and one for the "student" phase. Thus, during learning, ten digital words were used in the 
data generator for each pattern presentation. 

In addition to presenting patterns, digital weights can also be read into the chip with a 
similar 5 cycle phase. This uses the flip-flop storage arranged as a shift register for 
weight storage and readout. Because the memory of the data generator was only 1024 
bits deep, we would present only 66 patterns (660 words) each time the data generator 
was loaded by the control computer. The remaining memory was used to initialize the 
network to its previous value after the destructive readout of weights. In this way, 
perfonnance of the network was monitored after sets of 66 pseudo-randomly selected 
patterns. 100 test patterns could also be presented, without learning, to see what 
perfonnance the network achieved at that point. 

For the XOR, we organized the connectivity as in Fig. 5. For example, the connections 
between input and output neurons were fixed at zero. In order to test the settling of the 
network, we loaded a set of synapse weights that were learned in one of the computer 
simulations. We then checked the settling times of the network for various transitions of 
input states. These varied from 130 to 1700 nanoseconds, with most transitions in the 
250 to 600 nanosecond range. The shortest time is a simple settling of the neuron 
amplifier while the longest time represents several loops of settling of the network before 
a stable state is found. 

For the learning trials, we initialized all weights to zero. Fig. 6 shows three learning 
curves for a 2-2-1 XOR network (Fig. 5). At first the network performs at chance but it 
soon learns all the patterns. The values of the weights (which have an accuracy of 4 bits 
plus a sign) after learning are also shown for one of the trials. 

The chip had an easier time learning the XOR function in a network with only one 
hidden unit provided there were also direct connections from input to output as shown in 
the inset of Fig. 7. This also demonstrates the flexibility of the connectivity on the chip 
which would not be possible if we organized it as a strictly layered network. The figure 
shows the learning curves at various speeds of pattern presentation from 500 to 256,000 
patterns per second. The clock rate of the data generator at the highest speed was 2.56 
MHz so that the time during which noise was applied was only 400 nanoseconds. The 
noise amplifier often did not produce an excursion of neural states at these frequencies 
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Figure 6. Proportion Correct for On-chip Learning vs. Patterns Presented. 
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Figure 7. Learning Curves for 2-1-1 XOR at Various Speeds. 

effectively limiting learning above this rate. We could have increased the rate by 
compressing the five cycle phase to three or by random clamping of free running 
neurons, but probably not by an order of magnitude. Note that noise is necessary for 
learning by this system as shown by the curve at 500 Hz without noise. 
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Fig. 8 is an oscilloscope trace of the 4 neural states as a function of time during the 
pattern presentations. 
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Figure 8. Neural States during Learning. 

The time during which noise is applied is apparent from the rapid changes of state in the 
hidden neuron and also in the output neuron when it is not clamped. Since each pattern 
presentation can take as little as 5 microseconds, the XOR function can be learned in a 
few milliseconds. A pattern presentation on a 1 MIP serial computer such as a VAX 
11n80 takes about 0.5 seconds with our simulation software. 

3.2 Unsupervised Learning 

So far, we have described only supervised learning procedures, but the chip can also do 
unsupervised learning which has no teacher. Nevertheless, the network can learn to 
classify input patterns according to their similarity to one another. We set the chip 
connectivity as in Fig. 9 with 4 input neurons and 2 output neurons arranged so that they 
strongly inhibit each other to form a 'competitive' layer. With noise, this output layer 
performs a 'winner-take-all' function in that the output neuron which has the strongest 
net input is on and the other is off. This is because they inhibit each other strongly (are 
connected to each other with a large negative weight) so that only one can be on. The 
usual supervised learning rule was effectively simplified by removing the teacher 
requirement so that correlations always increment weights. Specifically, we stored a 
comparison pattern in the student phase which consisted of the 'on' state for the two 
competitive neurons and 'off' for all the input neurons. We then presented patterns to the 
chip with the "teacher" phase signal on. This has the effect of always decrementing the 
competitive connections which therefore remain at the lower limit of -15 since it is not 
possible to have more correlations than the stored "student" phase correlation. On the 
other hand, the stored "student" phase correlation for the weights leading from the input 
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Input 

Figure 9. A Competitive Learning Network. 

to the competitive layer is zero. Then, the winning output neuron will always be 
correlated with those input neurons which are ton' and hence these weights will be 
incremented. A decay signal decremented weights occasionally to keep them from 
growing too large. The net effect of such a procedure is for the output neurons to classify 
the input space among themselves, such that each responds to a particular neighborhood 
of similar patterns. (2] 

To demonstrate competitive learning, an input set was prepared such that the four input 
bits were not quite random. We picked two input neurons to represent 'left' and the other 
two to represent 'right". Patterns were never used with an equal number of left and right 
neurons on. Eventually one of the two output neurons responded to left weighted 
patterns and the other to right weighted patterns. Fig. 9 shows one set of weights which 
were obtained. Therefore the chip learned left from right although nothing in its wiring 
predisposed it in any way. 

3.3 Computer Simulations or Chip Test Conditions 

Computer tests were conducted which simulated limitations of the operating chip such as 
correlated noise. Table 1 presents summaries of 10 replications of 2000 pattern 
presentations across 5 testing conditions. The Table reports the mean percent correct on 
the last 100 patterns and, in parentheses, the number of networks which reached 100% 
performance during at least one block of 100 pattern presentations. The first line of the 
table shows the performance of the network with no noise. In the next four lines, two 
parameters of the noise were varied yielding 4 conditions. Specifically, noise was either 
correlated or uncorrelated across neurons and it was either presented as a single pulse in 
a "flash freeze" schedule or following a broad annealing schedule. 
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The 2-1-1 XOR. in which the inputs are directly connected to the outputs. demonstrated 
very good performance across conditions. Indeed. additional tests of the 2-1-1 in the no­
noise condition showed that within 10k patterns all networks reached 100%. This 
suggests there are deterministic solutions for the 2-1-1. 

TABLE 1. Results of Computer Simulations. 

nOIse schedule 2-1-1 XOR 2-2-1 XOR 4-4-1 parity 

no noise - 92(9) 67(0) 72(0) 
correlated flash freeze 95(9) 83(5) 71(0) 
correlated anneal temperature 99(10) 78(2) 74(0) 
uncorrelated flash freeze 99(10) 84(4) 67(0) 
uncorrelated anneal temperature 99(10) 85(5) 79(0) 

no noise anneal gain 99(9) 81(4) 85(2) 

The 2-2-1 networks learned to only 67% correct without noise. Learning with correlated 
noise degraded performance compared to learning with uncorrelated noise. While the 
chip contained only 6 neurons it was of interest to consider how limitations such as those 
studied here might affect solutions to larger problems. Thus. the solution to parity 
problems were considered and are included in the table. 

It is worth noting that the full complexity of the chip's settling and noise distribution is 
not captured in the discrete time simulations on the computer. The fact that we do not 
use a circuit simulation may account for some of the differences between the simulations 
and chip performance. It is interesting to note that learning by the chip was generally 
faster than learning by the simulation program and that the chip seemed to require noise 
for learning more than the simulator. 

We also considered a system without random noise in which we annealed the inverse 
gain of the neurons like a temperature through a broad annealing schedule covering the 
values previously exam ined [2] • As shown in the last line of the Table this performed 
comparably to temperature annealing reported above. 10 runs of a 2-2-1 XOR gave a 
mean performance of 81 % with 4 networks reaching 100%. On the 4-4-1 parity problem 
the mean performance was better than the results of annealing temperature. The mean 
performance was 85% and 2 networks reached 100%. For still larger problems. such as 
6-8-1 parity. performance was comparable to annealing with noise. 

4. FUTURE DIRECTIONS 

4.1 Applications of Learning Systems 

Learning systems give us a way to encode knowledge as a set of training examples rather 
than as a set of rules. Learned behavior emerges from the training set in ways that 
depend on the input representation. the network architecture. and the learning procedure. 
This technique is suitable for problem domains where there are too many rules or where 
the rules are not known. Two general categories of problems suitable for learning 
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systems are pattern recognition and some types of expert systems. 

Pattern recognition of something like an oak leaf is · difficult because of the many 
variations a rule-based system would have to consider even when variations of scale, 
rotation, and translation are accounted for. Yet, it is quite easy to give a learning system 
many training examples of oak leaves. Scale, rotation, and translation invariance can be 
built into the network structure. Similarly, recognition of speech sounds is difficult, but 
many training examples exist. Here also, pre-processing of the auditory data is important 
to obtain a useful representation. Another pattern learning task useful in 
telecommunications is learning the codebook for vector quantization in a real-time visual 
data compression system. [61 

Expert knowledge is often easier to encode by training examples as well. Experts often 
do not know the rules they use to troubleshoot equipment or give advice. Again, it is 
quite easy, by taking a history of such advice, to build a large database of training 
examples. As knowledge changes, training is a more graceful way of Updating a 
knowledge base than changing the rules. In telephone networks, fault handling or traffic 
routing are examples of problems for which training is a suitable way of encoding 
knowledge. 

4.2 Future Large-Scale Learning Systems 

Because training takes too much computer time in a simulation, physical 
implementations of learning systems such as ours are necessary for speed. It takes 
several hours to train a network to recognize a few milliseconds of speech. [7] If we could 
expand our system to the thousand-neuron level, it would be possible to learn simple 
speech recognition in real time. 

Because the chip uses Ohm's law to multiply, charge conservation to add, device physics 
to create a threshold step, and a physical noise mechanism for random number 
generation, we can present training patterns to this chip about 100,000 times faster than 
the computer simulator. This factor, mostly due to the physical analog computation at 
this small network size, will increase with the size of the system due to its inherently 
parallel nature. It would also be possible to build fast special-purpose digital hardware to 
perform the multiply-accumulate calculations and do fast compares in parallel. Such 
hardware would take up considerably more silicon area but may be a good way to 
integrate neural network calculations into existing computer systems. If we could build a 
large VLSI learning system of, say, 10,000 neurons and 1,000,000 synapses, it would be 
about a billion times faster than a simulator on a 1 MIP machine. Presumably, such a 
system will be able to learn things beyond the capability of simulations even if they are 
run on supercomputers. However, there are several challenges to building these systems. 

An algorithmic problem divorced from implementation is the effect of scaling to large 
size in highly connected networks. The learning time of such a system scales 
exponentially with the size of the problem. [8] The traditional way of handling complexity 
in large problems is to break them into smaller subpieces. An effective algorithm is yet 
to be discovered for doing learning in the modular, hierarchical networks which would be 
required to handle large problems. 
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Even from a technological viewpoint, modularity is necessary to manage the connectivity 
in a typical multiple chip system. A highly connected system, even if it could be built, 
would take too long to settle even considering the technology and parallel speedups 
available. Constraints such as power dissipation, capacitive loading across chips, and 
interchip communication are difficult to solve. If we succeed in these challenges, we will 
have the problem of presenting data to the system at extremely high rates amounting to 
several thousand (or more) bits every few microseconds. Biology solves these problems 
in the visual system, for example, by highly parallel communication via the optic nerve. 
It is unlikely that we will be able to use a million bit wide bus in our electronic system, 
however. 

Can one take the weights learned by a learning system and simply load them onto a much 
simpler system with programmable rather than adaptive synapses? This is perhaps 
possible for smaller systems where analog inaccuracies and defects can be controlled. 
Modular networks provide a way of handling inaccuracies. However, for large analog 
systems, adaptation mechanisms are needed to maintain accuracy. Even if the accuracy 
were a few percent, a system of only a hundred neurons would be inaccurate across 
chips. In biological systems, if one were to place the connection strengths found in brain 
A onto the structures of brain B, the result would be chaos rather than a brain transplant 
The robustness of neural systems depends on having the neurons and synapses adapt to 
the particular environment they find themselves in. Nevertheless, some amount of hard­
wiring is probably possible in modular systems if it is modifiable by a trainable portion of 
the network. A speech recognition system may, for example, adapt in real time to the 
accents and timbre of a particular speaker. It is also likely that the system would require 
at least partial training beforehand for robustness. 

We plan to design a larger version of our test chip containing both neurons and synapses 
which can form part of a still larger multiple chip network with the addition of chips 
containing only synapses. This next chip will have self-powered synapses so that each 
neuron need only signal its state rather than drive an unknown number of neurons from 
other chips. In addition, the noise generator will be improved so that true annealing is 
possible. We may also go further toward a fully analog chip[2] by having a variable gain 
neuron. Analog charge domain storage of weights and transport of states would further 
reduce the silicon area necessary but the technology required is not standard. 

There are many challenges in scaling learning networks up to the 1 ()4 neuron and 1 ()6 

synapse range although these large electronic learning networks will have on the order of 
a billionfold speed advantage over simulations based on serial computers. Thus they may 
be able to address many longstanding problems in artificial intelligence which have 
resisted attack by more conventional methods. 
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