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ABSTRACf 
This paper describes a CMOS artificial neuron. The circuit is 
directly derived from the voltage-gated channel model of neural 
membrane, has low power dissipation, and small layout geometry. 
The principal motivations behind this work include a desire for high 
performance, more accurate neuron emulation, and the need for 
higher density in practical neural network implementations. 

INTRODUCTION 
Popular neuron models are based upon some statistical measure of known natural 
behavior. Whether that measure is expressed in terms of average firing rate or a 
firing probability, the instantaneous neuron activation is only represented in an 
abstract sense. Artificial electronic neurons derived from these models represent this 
excitation level as a binary code or a continuous voltage at the output of a summing 
amplifier. While such models have been shown to perform well for many applica­
tions, and form an integral part of much current work, they only partially emulate the 
manner in which natural neural networks operate. They ignore, for example, 
differences in relative arrival times of neighboring action potentials -- an important 
characteristic known to exist in natural auditory and visual networks {Sejnowski, 
1986}. They are also less adaptable to fme-grained, neuron-centered learning, like 
the post-tetanic facilitation observed in natural neurons. We are investigating the 
implementation and application of neuron circuits which better approximate natural 
neuron function. 

BACKGROUND 
The major temporal artifacts associated with natural neuron function include the 
spacio-temporal integration of synaptic activity, the generation of an action potential 
(AP), and the post-AP hyperpolarization (refractory) period (Figure 1). Integration, 
manifested as a gradual membrane depolarization, occurs when the neuron accumu­
lates sodium ions which migrate through pores in its cellular membrane. The rate of 
ion migration is related to the level of presynaptic AP bombardment, and is also 
known to be a non-linear function of transmembrane potential. Efferent AP genera­
tion occurs when the voltage-sensitive membrane of the axosomal hillock reaches 
some threshold potential whereupon a rapid increase in sodium permeability leads to 
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complete depolarization. Immediately thereafter, sodium pores "close" simultaneously 
with increased potassium permeability, thereby repolarizing the membrane toward its 
resting potential. The high potassium permeability during AP generation leads to the 
transient post-AP hyperpolarization state known as the refractory period. 
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Figure 1. Temporal artifacts associated with neuron function. (1) gradual 
depolarization, (2) AP generation, (3) refractory period. 

Several analytic and electronic neural models have been proposed which embody 
these characteristics at varying levels of detail. These neuromimes have been used to 
good advantage in studying neuron behavior. However, with the advent of artificial 
neural networks (ANN) for computing, emphasis has switched from modeling neu­
rons for physiologic studies to developing practical neural network implementations. 
As the desire for high performance ANNs grows, models amenable to hardware 
implementation become more attractive. 

The general idea behind electronic neuromimes is not new. Beginning in 1937 with 
work by Harmon {Harmon, 1937},lIectronic circuits have been used to model and 
study neuronal behavior. In the late 196(Ys, Lewis {Lewis, 1968} developed a circuit 
which simulated the Hodgkin-Huxley model for a single neuron, followed by 
MacQregor's circuit {MacGregor, 1973} in the early 1970's which modelled a group 
of 50 neurons. With the availability of VLSI in the 1980's, electronic neural imple­
mentations have largely moved to the realm of integrated circuits. Two different stra­
tegies have been documented: analog implementations employing operational 
amplifiers {Graf, et at, 1987,1988; Sivilotti, et at, 1986; Raffel, 1988; Schwartz, et al, 
1988}; and digital implementations such as systolic arrays {Kung, 1988}. 

More recently, impulse neural implementations are receiving increased attention. 
like other models, these neuromimes generate outputs based on some non-linear 
function of the weighted net inputs. However, interneuron communication is realized 
through impulse streams rather than continuous voltages or binary numbers {Murray, 
1988; N. El-Leithy, 1987}. Impulse networks communicate neuron activation as vari­
able pulse repetition rates. The impulse neuron circuits which shall be discussed offer 
both small geometry and low power dissipation as well as a closer approximation to 
natural neuron function. 
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-
A CMOS IMPULSE NEURON 

An impulse neuron circuit developed for use in CMOS neural networks is shown in 
Figure 2. In this circuit, membrane ion current is modeled by charge flowing to and 
from Ca. Potassium and sodium influx is represented by current flow from V dd to the 
capacitor, and ion efflux by flow from the capacitor to ground. The Field Effect­
Transistors (FETs) connected between V dd, Vsr , and the capacitor emulate voltage­
and chemically-gated ion channels found in natural neural membrane. In the Figure, 
PET 1 corresponds to the post-synaptic chemicaIly-gated ion channels associated with 
one synapse. PETs 2, 3, and 4 emulate the voltage-gated channels distributed 
throughout a neuron membrane. The following equations summarize circuit opera­
tion: 

Ca dVa/dt=/31E (Vr,Va)+/3:uF(Va)-/34G (Va) 

E(Vr,Va)= (Vr-Va-V",)(V dd-Va)-(V dd-Va)2 /2 

F(Y. ) ={(V dd-Vtp) (Va-V dd)-(Va-V dd)2 /2 if g(t) ~O 
a 0 otherwlSe 

G(V)={(Vdd-V",)Va-Va2/2 if h(t~)=O 
a 0 otherwlSe 

g(t) =h (t)(l-h (t-C)) 

1
0 if Va(t) > Vth; 

h()- Vtl<Va(t)<Vth and h (Va(t-e))=O 
t - 1 if Va(t)<Vtl; 

Vtl<Va(t)<Vth and h (~(t-e))=l 
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Figure 2. A CMOS impulse neuron with one excitatory synapse-PET. 
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Equation (1) expresses how changes in Va (which emulates instantaneous neuron 
excitation) depend upon the sum of three current components controlled by these 
PETs. E, F, and G in equations (2) through (4) express PET drain-source currents as 
functions terminal voltages. Equations (3) and (5) rely upon the assumption that PET 
2 and PET 3 are implemented as a single dual-gate device where the transconduc­
tance f3n=fJ2f33/f.P2+/33). Non-saturated PET operation is assumed for these equa­
tions even though the PETs will momentarily pass through saturation at the onset of 
conduction in the actual circuit. 

The Schmitt trigger circuit establishes a nonlinear positive feedback path responsible 
for action potential initiation. The upper threshold of the trigger (VIII) emulates the 
natural neuron activation threshold while the lower threshold (Va) emulates the max­
imum hyperpolarization voltage. Equation (6) expresses the hysterisis present in the 
Schmitt trigger transfer characteristic. When Vs reaches the upper Schmitt threshold, 
PET 3 turns on, creating a current path from V tid to Cs, and emulating the upswing of 
a natural action potential spike. A moment later, PET 2 turns off, starting the action 
potential downswing. Simultaneously, PET 4 turns on, begining the absolute refrac­
tory period where Cs is discharged toward the maximum hyperpolarization potential. 
When that potential is reached, the Schmitt trigger turns off PET 4 and the impulse 
firing cycle is complete. 

The capacitor terminal voltage Va emulates all gross temporal artifacts associated 
with membrane potential, including spacio-temporal integration, the action potential 
spike, and a refractory period. The instantaneous net excitation to the neuron is 
represented by the total current flowing into the summing node on the floating plate 
of the capacitor. Charge packets are transferred from V tid to the capacitor by the 
excitatory synapse PET. Excitatory packet magnitude is dependent upon the tran­
sconductance PI. Inhibitory synapses (not shown) operate similarly, but instead 
reduce capacitor voltage by drawing charge to Va. A buffered action potential signal 
useful for driving many synapse PETs is available at the axon output. 

The membrane potential components (E,F,and G) of the circuit equations describe 
nonlinear relationships between post-synaptic excitation (E), membrane potential (F 
and G), and membrane ion currents. The functional forms of these components are 
equivalent to those found between terminal voltages and currents in non-saturated 
PETs. It is notable that natural voltage-gated channels do not necessarily follow the 
same current-voltage relationship of a PET. Even though more accurate models and 
emulations of natural membrane conductance exist, it seems unlikely at this time that 
they would help further improve neural network implementation. There is little doubt 
that more complex circuitry would be required to better approximate the true non­
linear relationship found in the biochemistry of natural neural membrane. That need 
conflicts directly with the goal of high-density integration. 

IMPULSE NEURAL NE1WORKS ~ 

Organizing a collection of neuron circuits into a useful network confIguration requires 
some weight specification method. Weight values can be either directly specified by 
the designer or learned by the network. A method particularly suited for use with the 
fIXed PET -synapses of the foregoing circuit is to fust learn weights using an "off-line" 
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simulation, then translate the numerical results to physical FET transconductances. 
To do this, the activation function of an impulse neuron is derived and used in a 
modified back-propagation learning procedure. 

IMPULSE NEURON ACfIVATION FUNCTION 
Learning algorithms typically require some expression of the neuron activation func­
tion. Neuron activation can be expressed as a numerical value, a binary pattern, or a 
circuit voltage. In an impulse neuron, activation is expressed in terms of firing rate. 
The more frequently an impulse neuron circuit fues, the greater its activation. 
Impulse neuron activation is a nonlinear function of the excitation imparted through 
its synapse connections. An analytical expression of this nonlinear function can be 
derived using a rectangular approximation of neuron impulse waveforms. 

It is fust necessary to defme a unit-impulse as one impulse conducted by a synapse 
FET having some pre-determined reference transconductance (f3~). In Figure 3, To 
represents an invariant activation impulse width which is assumed to be identical for 
all neurons. T 1 represents the variable time period required for the neuron to accu­
mulate the equivalent of K unit-impulses input excitation prior to firing. It can be 
assumed that net input comes from a single excitatory synapse with no other excita­
tion. It shall also be assumed that impulses arrive at a constant rate, so 

T 1 =K /W;jR; (7) 

where R/ is the firing rate of the source neuron and W;j is the weight of the synapse 
connecting neuron; and neuron j. 

The firing rate of the receiving neuron will be Rj = 1/ (To + T 1). Substituting for T 1 
this becomes: 

(8) 

F"tgure 3 compares this function with the logistic activation function. The impulse 
activation function approaches zero at the rate of 1/ K when R; approaches zero. The 
function also approaches an asymptote of Rj = l/T 0 as R; increases without bound. 
Any non-synaptic source which causes current flow from V tit to Co will shift the curve 
to the left, and reflect a spontaneous firing rate at zero input excitation. A similar 
current source to VoU will shift the function to the right, reflecting a positive firing­
onset threshold. Circuit-level simulations show a clear correspondence to these 
analytical results. This functional form is also evident in activation curves experimen­
tally observed with natural neurons {Guyton, 1986}. Various natural neurons are 
known to exhibit both spontaneous firing and fuing-onset thresholds as well. 

The impulse activation function constant, K, is determined by several factors including 
fJ~, Co, and To. Assuming that To« T h no leakage current exists, and that a FET 
conducting in its non-saturated region can be approximated by a resistor, the follow­
ing expression for K is obtained: 

(9) 
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where 

Rchon =l/pteJ<Vdd -V".), 

Ca is the summing capacitance, Va Vth are the low and high threshold voltages of the 
Schmitt trigger, and V". is the gate threshold voltage for an excitatory PET-synapse. 
A more accurate K value can be obtained by using the non-saturated PET current 
equation and solving a nonlinear differential equation. 

1.0 

0 .5 

o 

rj~ ~ 1, 

tTo~ 1 
ri 

Logistic 

Activation 

j 
J 

rectangUlar Impulse Train 

Impulse 
Activation 

~--~----------------------------------~---------------------------------------------ri 
o 

Figure 3. Rectangular impulse train approximation for impulse activation 
function derivation. Unlike the logistic function which asymptotically 
approaches zero, impulse activation is equal to zero over a range of net 
excitation. 

BACK·PROPAGATION IN IMPULSE NE1WORKS 
A back-propagation algorithm has been used to learn connection weights for impulse 
neural networks. At this time, weight values are non-adaptive (they are fixed at cir­
cuit fabrication) because they are implemented as invariant PET transconductances. 
Adaptive synapses compatible with impulse neuron circuits are in the early stages of 
development, but are not available at this time. Much can be learned about these net­
works using non-adaptive prototypes, however. As a result, weight learning is per­
formed offline as part of the network design process. The back-propagation pro­
cedure used to learn weights for impulse networks differs from the generalized delta 
rule {Rumelhart, 1986} in two ways. 

The fust difference is the use of the impulse activation function instead of the logistic 
function. Any activation nonlinearity is a viable candidate for use with the generalized 
delta rule as long as it is differentiable. This is where difficulties mount with the 
impulse activation function. First of all, it is not differentiable at zero. What seems to 
be more important, however, is that its first derivative equals zero over a range of 
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inputs. Examination of the generalized delta rule (which performs gradient-descent) 
reveals that when the fust derivative of neuron activation becomes zero, connections 
associated with that-neuron will cease to adapt. Once this happens, the procedure will 
most probably never arrive at a problem solution. 

To work around this problem, a second deviation from the generalized delta rule was 
implemented. This involves a departure from using the true first derivative when the 
impulse activation becomes zero. A small constant can be used to guarantee that 
learning continues even though the associated neuron activation is zero: 

Act = l/(To + K /Net) 

A ,_{(l/(To+K/Net)' if Net >0 
ct - e otherwise 

(10) 

(11) 

The use of these equations yields a back-propagation algorithm for impulse networks 
which does not perform true gradient descent, yet which so far has been observed to 
learn solutions to logic problems such as XOR and the 4-2-4 encoder. Investigation 
of other offline learning algorithms for impulse networks continues. Currently, this 
algorithm fulfills the immediate need for an offline procedure which can be used in 
the design of multi-layer impulse neural networks. 

IMPLEMENTATION 
Two requirements for high density integration are low power dissipation and small 
circuit geometry. CMOS impulse neurons use switching circuits having no continuous 
power dissipation. A conventional op-amp circuit must draw constant current to 
achieve linear bias. An op-amp also requires larger circuit geometries for gain accu­
racy over typical fabrication process variations. Such is not the case for nonlinear 
switching circuits. As a result, these neurons and others like them are expected to 
help improve analog neural network integration density. 

An impulse neuron circuit has been designed which eliminates FETs 2 and 3 of Figure 
2 in exchange for reduced layout area. In this circuit, Va no longer exhibits an activa­
tion potential spike. This spike seems irrelevant given the buffered impulse available 
at the axon output. The modified neuron circuit occupies 200 X 25 lambda chip area. 
A fIXed PET -synapse occupies a 16 by 18 lambda rectangle. With these dimensions a 
full-interconnect layout containing 40 neurons and 1600 fIXed connections will fit on a 
MOSIS 2-micron tiny chip. XOR and 4-2-4 networks of these circuits are being 
developed for 2-micron CMOS. 

CONCLUSION 
The motivation of this work is to improve neural network implementation technology 
by designing CMOS circuits derived from the temporal characteristics of natural neu­
rons. The results obtained thus far include: 

Two CMOS circuits which closely correspond to the voltage-gat ed-channel 
model of natural neural membrane. 
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Simulations which show that these impulse neurons emulate gross artifacts of 
natural neuron function. 

Initial work on a back-propagation algorithm which learns logic solutions using 
the impulse neuron activation function. 

The development of prototype impulse network I.Cs. 

Future goals involve extending this investigation to plastic synapse and neuron cir­
cuits, alternate algorithms for both offline and online learning, and practical imple­
mentations. 
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