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ABSTRACT
A new learning algorithm for the storage of static
and periodic attractors in biologically inspired
recurrent analog neural networks is introduced.
For a network of n nodes, n static or n/2 periodic
attractors may be stored. The algorithm allows
programming of the network vector field indepen-
dent of the patterns to be stored. Stability of
patterns, basin geometry, and rates of convergence
may be controlled. For orthonormal patterns, the
legrning operation reduces to a kind of periodic
outer product rule that allows local, additive,
commutative, incremental learning. Standing or
traveling wave cycles may be stored to mimic the
kind of oscillating spatial patterns that appear
in the neural activity of the olfactory bulb and
prepyriform cortex during inspiration and suffice,
in the bulb, to predict the pattern recognition
behavior of rabbits in classical conditioning ex-
periments. These attractors arise, during simulat-
ed inspiration, through a multiple Hopf bifurca-
tion, which can act as a critical "decision point"
for their selection by a very small input pattern.

INTRODUCTION
This approach allows the construction of biological models and
the exploration of engineering or cognitive networks that
employ the type of dynamics found in the brain. Patterns of 40
to 80 hz oscillation have been observed in the large scale ac-
tivity of the olfactory bulb and cortex(Freeman and Baird 86)
and even visual neocortex(Freeman 87,CGrey and Singer 88), and
found to predict the olfactory and visual pattern recognition
responses of a trained animal. Here we use analytic methods of
bifurcation theory to design algorithms for determining synap-
tic weights in recurrent network architectures, like those
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found in olfactory cortex, for associative memory storage of
these kinds of dynamic patterns.

The "projection algorithm" introduced here employs higher
order correlations, and is the most analytically transparent
of the algorithms to come from the bifurcation theory ap-
proach(Baird 88). Alternative numerical algorithms employing
unused capacity or hidden units instead of higher order corr-
elations are discussed in (Baird 89). All of these methods
provide solutions to the problem of storing exact analog at-
tractors, static or dynamic, in recurrent neural networks, and
allow programming of the ambient vector field independent of
the patterns to be stored. The stability of cycles or equi-
libria, geometry of basins of attraction, rates of convergence
to attractors, and the location in parameter space of primary
and secondary bifurcations can be programmed in a prototype
vector field - the normal form.

To store cycles by the projection algorithm, we start with the
amplitude equations of a polar coordinate normal form, with
coupling coefficients chosen to give stable fixed points on
the axes, and transform to Cartesian coordinates. The axes of
this system of nonlinear ordinary differential equations are
then linearly transformed into desired spatial or spatio-tem-
poral patterns by projecting the system into network coordina-
tes - the standard basis - using the desired vectors as colum-
ns of the transformation matrix. This method of network syn-
thesis is roughly the inverse of the usual procedure in bifur-
cation theory for analysis of a given physical system.

Proper choice of normal form couplings will ensure that the
axis attractors are the only attractors in the system - there
are no "spurious attractors". If symmetric normal form coef-
ficients are chosen, then the normal form becomes a gradient
vector field. It is exactly the gradient of an explicit poten-
tial function which is therefore a strict Liapunov function
for the system. Identical normal form coefficients make the
normal form vector field equivariant under permutation of the
axes, which forces identical scale and rotation invariant
basins of attraction bounded by hyperplanes. Very complex
periodic attractors may be established by a kind of Fourier
synthesis as linear combinations of the simple cycles chosen
for a subset of the axes, when those are programmed to be
unstable, and a single "mixed mode" in the interior of that
subspace is made stable. Proofs and details on vectorfield
programming appear in (Baird 89).

In the general case, the network resulting from the projection
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algorithm has fourth order correlations, but the use of restr-
ictions on the detail of vector field programming and the
types of patterns to be stored result in network architectures
requiring only second order correlations. For biological mod-
eling, where possibly the patterns to be stored are sparse and
nearly orthogonal, the learning rule for periodic patterns
becomes a "periodic" outer product rule which is local, add-
itive, commutative, and incremental. It reduces to the usual
Hebb-1like rule for static attractors.

CYCLES
The observed physiological activity may be idealized mathe-
matically as a "cycle", r x, @ *") = 4.9.2 ...,n. Such a

cycle is a "periodic attractor™ if it is stable. The global
amplitude r is just a scaling factor for the pattern x , and
the global phase w in et jis q periodic scaling that scales x
by a factor between :+ 1 at frequency w as t varies.

The same vector x°® or "pattern" of relative amplitudes can
appear in space as a standing wave, like that seen in the
bulb, if the relative phase eﬂ of each compartment (component)
is the same, ¢°,, = ¢, or as a traveling wave, like that seen
in the prepyriform cortex, if the relative phase components of
¢° form a gradient in space, 6°,, = 1/a 6%;. The traveling wave
will "sweep out" the amplitude pattern 5? in time, but the
root-mean-square amplitude measured in an experiment will be
the same x*, regardless of the phase pattern. For an arbitrary
phase vector, these "simple" single frequency cycles can make
very complicated looking spatio-temporal patterns. From the
mathematical point of view, the relative phase pattern ¢ is a
degree of freedom in the kind patterns that can be stored.
Patterns of uniform amplitude x which differed only in the
phase locking pattern & could be stored as well.

To store the kind of patterns seen in bulb, the amplitude
vector x is assumed to be parsed into equal numbers of excita-
tory and inhibitory components, where each class of component
has identical phase, but there is a phase difference of 60 -
90 degrees between the classes. The traveling wave in the
prepyriform cortex is modeled by introducing an additional
phase gradient into both excitatory and inhibitory classes.

PROJECTION ALGORITHM
The central result of this paper is most compactly stated as
the following:
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THEOREM -
Any set S, s = 1,2, ...,n/2 , of cycles r® x; el(8is +wst)  of

linearly independent vectors of relative component amplitudes
x* ¢ R" and phases ¢° ¢ S", with frequencies w® ¢ R and global
amplitudes r® ¢ R, may be established in the vector field of
the analog fourth order network:

by some variant of the projection operation

=
T. : = E Pi IJ P 2y Tijkl = E P

=1 -1 -1
ij mn m “mn nj Apn P my P nk P

mn " im “'mn mj nt 2

where the n x n matrix P contains the real and imaginary com-
ponents [x® cos ¢° , x° sin ¢°] of the complex eigenvectors

x5 e'® as columns, J is an n x n matrix of complex conjugate
eigenvalues in diagonal blocks, A is an n x n matrix of 2x2
blocks of repeated coefficients of the normal form equations,
and the input bis(t) is a delta function in time that establ-
ishes an initial condition. The vector field of the dynamics
of the global amplitudes r. and phases s, is then given exactly
by the normal form equations :

' 2
g, o= W_ + Eﬁ bsj r
In particular, for ag > 0, and a,/a, < 1, for all s and k,

the cycles s = 1,2,...,n/2 are stable, and have amplitudes
re = (us/assyvz, where u, = 1 - 1 .

Note that there is a multiple Hopf bifurcation of codimension
nf/2 at 1+ = 1. Since there are no approximations here, however,
the theorem is not restricted to the neighborhood of this
bifurcation, and can be discussed without further reference to
bifurcation theory. The normal form equations for dr®/dt and
de%/dt determine how r° and #° for pattern s evolve in time in
interaction with all the other patterns of the set S. This
could be thought of as the process of phase locking of the
pattern that finally emerges. The unusual power of this al-
gorithm lies in the ability to precisely specify these non-
linear interactions. In general, determination of the modes of
the linearized system alone (Li and Hopfield 89) is insuf-
ficient to say what the attractors of the nonlinear system
will be.
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PROOF

The proof of the theorem is instructive since it is a constru-
ctive proof, and we can use it to explain the learning algori-
thm. We proceed by showing first that there are always fixed
points on the axes of these amplitude equations, whose stabil-
ity is given by the coefficients of the nonlinear terms. Then
the network above is constructed from these equations by two
coordinate transformations. The first is from polar to Car-
tesian coordinates, and the second is a linear transformation
from these canonical "mode" coordinates into the standard
basis e,, e,, ..., ey, or "network coordinates". This second
transformation constitutes the "learning algorithm", because
it transforms the simple fixed points of the amplitude equa-
tions into the specific spatio-temporal memory patterns desi-
red for the network.

Amplitude Fixed Points

Because the amplitude equations are independent of the rota-
tion ¢, the fixed points of the amplitude equations charact-
erize the asymptotic states of the underlying oscillatory
modes. The stability of these cycles is therefore given by the
stability of the fixed points of the amplitude equations. On
each axis r, the other components r, are zero, by definition,
r"j=r"].(uj--Ek kr'k )=0, forry=0, which leaves

2 2 .
re = s ( u-a,r ), and r, =0, when rg u/ag

There is an equilibrium on each axis s, at rs-(us/asgfvz, as
claimed. Now the Jacobian of the amplitude equations at some
fixed point r~ has elements 3 ;
For a fixed point r“s on axis s, Jij = 0 , since r~; or r=, = 0,
making J a diagonal matrix whose entries are therefore its

eigenvalues. Now J,; = u; - Qi r“"sz, for i /= s, and J = u, -
2

~ 2 . -~
3 a_ r°c. §1nce reg = ufa,, J = - 2 ug, un? Jij = uy - ay
(u/a,). This gives a; /o, > u;/u, as the condition for nega-
tive eigenvulues that assures the stability of r” . Choice of
ii/an /”1' for all i,j , therefore guarantees stability of

1 axis 1xed points.

Coordinate Transformations

We now construct the neural network from these well behaved
equations by the following transformations,

First; polar to Cartesian , (r's,-s to (VZ&q'VZS) : Using

Vosq = g COS 8., Vv, =1r, sin ¢ , and differentiating these

463



464

Baird

gives: . . :
V-1 = Fg COS ¢, - r_sin ¢ s, ,
Vg = rgs8ins, + r cos s s
by the chain rule. Now substituting cos g, = vz‘_,._q/r's .
and r, sin ¢, = Vs,
gives: Vos-1 = (v2$-1,rs) Fs = Vas %
Vs = Ve 'y ¢+ (v25-1/rs) ®s
Entering the expressions of the normal form for r, and s,
gives:

Vos-1 = (V25-1frs) (us rs + s Ej us,j rJZ) = Vo8 (ws h Ej bsj "32)-

. 2 _ 2 2
and since Fr o= Voo " + Voo,
. n/2

2 2
Vas-1 = Ug Vogq = Wy Voo + Ej [vpoq agy = Voo byl (vy1% + vpi©)

Similarly,
i n/2 ) )
Vos = Ug Voo + Wy Voo q + By [vyo agy + vpoq bl (v 4" + vpi%).

Setting the bq = 0 for simplicity, choosing u , = - 1 + 1
to get a standard network form, and reindexing i, j=1,2,...,n ,
we get the Cartesian equivalent of the polar normal form equa-
tions.

. n n

Vi = - Tt vy + EJJijvj + vy EJAiJvJ2

Here J is a matrix containing 2x2 blocks along the diagonal of
the local couplings of the linear terms of each pair of the
previous equations v,._, , Vv, , with - 1 separated out of the
diagonal terms. The matrix A has 2x2 blocks of identical coef-
ficients ag; of the nonlinear terms from each pair.

r h s h
LI Gy @47 T Oy
Wy 1 ;1 G419 Q32 Oy
J = & =
1 E W 92t 921 Oz 9
w, 1 Q1 Gy Gy Oy
v - 1
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Learning Transformation - Linear Term

Second; J is the canonical form of a real matrix with complex
conjugate eigenvalues, where the conjugate pairs appear in
blocks along the diagonal as shown. The Cartesian normal form
equations describe the interaction of these linearly uncoupled
complex modes due to the coupling of the nonlinear terms. We
can interpret the normal form equations as network equations
in eigenvector (or "memory") coordinates, given by some diag-
onalizing transformation P, containing those eigenvectors as
its columns, so that J = P' T P. Then it is clear that T may
instead be determined by the reverse projection T = P J p
back into network coordinates, if we start with desired eigen-
vectors and eigenvalues. We are free to choose as columns in
P, the real and imaginary vectors [x® cos ¢° , x°* sin ¢°] of the
cycles x° e'®® of any linearly independent set S of patterns
to be learned. If we write the matrix expression for the proj-
ection in component form, we recover the expression given in
the theorem for T

ij°
-1
T = E Py J P

J mn m “mn nj

Nonlinear Term Projection

The nonlinear terms are transformed as well, but the expres-
sion cannot be easily written in matrix form. Using the com-
ponent form of the transformation,

. ; -1
substituting into the Cartesian normal form, gives:
y -1 -1
-1 -1 -1
+ EJ Pij (E, P ik x.) E; Ay (E, Py %) (B, Py %)
Rearranging the orders of summation gives,
' . oo -1
-1 -1 -1
+ E. E E (E, Ej Pij P ik Ajl P 5 P nd . X, X

Finally, performing the bracketed summations and relabeling
indices gives us the network of the theorem,

with the expression for the tensor of the nonlinear term,
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-1 -1
Tijkl'E PiAP-P

-1
mn m “'mn mj nk P nl Q.E.D.

LEARNING RULE EXTENSIONS

This is the core of the mathematical story, and it may be ex-
tended in many ways. When the columns of P are orthonormal,
then P! = PT, and the formula above for the linear network
coupling becomes T = PJPT. Then, for complex eigenvectors,

Ty = Eg X xjs [cos(e,® - ajs) + w, sin (o - ejs)].

This is now a local, additive, incremental learning rule for
synapse ij, and the system can be truly self-organizing be-
cause the net can modify itself based on its own activity.
Between units of equal phase, or when af = ¢.° = 0 for a static
pattern, this reduces to the usual Hebb rule.

In a similar fashion, the learning rule for the higher order
nonlinear terms becomes a multiple periodic outer product rule
when the matrix A is chosen to have a simple form. Given our
present ignorance of the full biophysics of intracellular
processing, it is not entirely impossible that some dimension-
ality of the higher order weights in the mathematical network
could be implemented locally within the cells of a biological
network, using the information available on the primary lines
given by the linear connections discussed above. When the A
matrix is chosen to have uniform entries Aij = ¢ for all its
off-diagonal 2 x 2 blocks, and uniform entries Aj;j =c - d
for the diagonal blocks, then,

Ti = C83580 —dEs"/z X, xj"‘ x> x,° [cose® t:.osejs coso,® cose,®
+ sinef sine,S cosqf cosels + coseis cosejs sian sinels
+ ainef sinejs sian sin%s].

This reduces to the multiple outer product

s s

Tigka = © 84 8q - d E‘,’"”'2 x,® x® X, x,* , for static patterns.

The network architecture generated by this learning rule is

. 2
This reduces to an architecture without higher order correla-
tions in the case that we choose a completely uniform A matrix
(Aq =c¢c , for all i,j). Then

' 2
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This network has fixed points on the axes of the normal form
as always, but the stability condition is not satisfied since
the diagonal normal form coefficients are equal, not less,
than the remaining A matrix entries. In (Baird 89) we describe
how clamped input (inspiration) can break this symmetry and
make the nearest stored pattern be the only attractor.

All of the above results hold as well for networks with sig-
moids, provided their coupling is such that they have a Tayl-
or's expansion which is equal to the above networks up to
third order. The results then hold only in the neighborhood of
the origin for which the truncated expansion is accurate. The
expected performance of such systems has been verified in
simulations.
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