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Research in artificial neural networks has genera1ly emphasized 
homogeneous architectures. In contrast, the nervous systems of natural 
animals exhibit great heterogeneity in both their elements and patterns 
of interconnection. This heterogeneity is crucial to the flexible 
generation of behavior which is essential for survival in a complex, 
dynamic environment. It may also provide powerful insights into the 
design of artificial neural networks. In this paper, we describe a 
heterogeneous neural network for controlling the wa1king of a 
simulated insect. This controller is inspired by the neuroethological 
and neurobiological literature on insect locomotion. It exhibits a 
variety of statically stable gaits at different speeds simply by varying 
the tonic activity of a single cell. It can also adapt to perturbations as a 
natural consequence of its design. 

INTRODUCTION 

Even very simple animals exhibit a dazzling variety of complex behaviors which they 
continuously adapt to the changing circumstances of their environment. Nervous systems 
evolved in order to generate appropriate behavior in dynamic, uncertain situations and 
thus insure the survival of the organisms containing them. The function of a nervous 
system is closely tied to its structure. Indeed, the heterogeneity of nervous systems has 
been found to be crucial to those few behaviors for which the underlying neura1 mecha­
nisms have been worked out in any detail [Selverston, 1988]. There is every reason to 
believe that this conclusion will remain valid as more complex nervous systems are stud­
ied: 

The brain as an "organ" is much more diversified than, for example, the 
kidney or the liver. If the performance of relatively few liver cells is 
known in detail, there is a good chance of defining the role of the whole 
organ. In the brain, different ce))s perform different, specific tasks ... 
Only rarely can aggregates of neurons be treated as though they were 
homogeneous. Above all, the cells in the brain are connected with one 
another according to a complicated but specific design that is of far 
greater complexity than the connections between cells in other organs. 
([Kuffler, Nicholls, & Martin, 1984], p. 4) 
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In contrast to research on biological nervous systems, work in artificial neural networks 
has primarily emphasized uniform networks of simple processing units with a regular in­
terconnection scheme. These homogeneous networks typically depend upon some gener­
al learning procedure to train them to perform specific tasks. This approach has certain 
advantages. Such networks are analytically tractable and one can often prove theorems 
about their behavior. Furthermore, such networks have interesting computational proper­
ties with immediate practical applications. In addition, the necessity of training these net­
works has resulted in a resurgence of interest in learning, and new training procedures are 
being developed. When these procedures succeed, they allow the rapid construction of 
networks which perform difficult tasks. 

However, we believe that the role of learning may have been overemphasized in artificial 
neural networks, and that the architectures and heterogeneity of biological nervous sys­
tems have been unduly neglected. We may learn a great deal from more careful study of 
the design of biological nervous systems and the relationship of this design to behavior. 
Toward this end, we are exploring the ways in which the architecture of the nervous 
systems of simpler organisms can be utilized in the design of artificial neural networks. 
We are particularly interested in developing neural networks capable of continuously 
synthesizing appropriate behavior in dynamic, underspecified, and uncertain 
environments of the sort encountered by natural animals. 

THE ARTIFICIAL INSECT PROJECT 

In order to address these issues, we have begun to construct a simulated insect which we 
call Periplaneta compUlatrix. Our ultimate goal is to design a nervous system capable of 
endowing this insect with a1l of the behaviors required for long-term survival in a com­
plex and dynamic simulated environment similar to that of natural insects. The skills re­
quired to survive in this environment include the basic abilities to move around, to find 
and consume food when necessary, and to escape from predators. In this paper, we focus 
on the design of that portion of the insect's nervous system which controls its locomo­
tion. 

In designing this insect and the nervous system which controls it, we are inspired by the 
biological literature. It is important to emphasize, however, that this is not a modeling 
project. We are not altempting to reproduce the experimental data on a particular animal; 
rather, we are using insights gleaned from Biology to design neural networks capable of 
generating similar behaviors. In this manner, we hope to gain a better understanding of 
the role heterogeneity plays in the generation of behavior by nervous systems, and to ab­
stract design principles for use in artificial neural networks. 

Figure 1. Periplaneta computatrix 
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BODY 

The body of our artificial insect is shown in Figure 1. It is loosely based on the American 
Cockroach. Periplaneta americana [Bell & Adiyodi. 1981]. However. it is a reasonable 
abstraction of the bodies of most insects. It consists of an abdomen. head. six legs with 
feet. two antennae. and two cerci in the rear. The mouth can open and close and contains 
tactile and chemical sensors. The antennae also contain tactile and chemical sensors. 
The cerci contain tactile and wind sensors. The feet may be 'either up or down. When a 
foot is down. it appears as a black square. Finally. a leg can apply forces which translate 
and rotate the body whenever its foot is down. 

In addition. though the insect is only two-dimensional, it is capable of "falling down." 
Whenever its center of mass falls outside of the polygon formed by its supporting feet, 
the insect becomes statically unstable. If this condition persists for any length of time. 
then we say that the insect has "fallen down" and the legs are no longer able to move the 
body. 

NEURAL MODEL 

The essential challenge of the Artificial Insect Project is to design neural controllers ca­
pable of generating the behaviors necessary to the insect's survival. The neural model 
that we are currently using to construct our controllers is shown in Figure 2. It represents 
the firing frequency of a cell as a function of its input potential. We have used saturating 
linear threshold functions for this relationship (see inset). The RC characteristics of the 
cell membrane are also represented. These cells are interconnected by weighted synapses 
which can cause currents to flow through this membrane. Finally, our model includes the 
possibility of additional intrinsic currents which may be time and voltage dependent. 
These currents aJlow us to capture some of the intrinsic propenies which make real neu­
rons unique and have proven to be important components of the neural mechanisms un­
derlying many behaviors. 
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For example, a pacemaker cell is a neuron which is capable of endogenously producing 
rhythmic bursting. Pacemakers have been implicated in a number of temporally pat­
terned behaviors and playa crucial role in our locomotion controller. As described by 
Kandel (1976, pp. 260-268), a pacemaker cell exhibits the following characteristics: (1) 
when it is sufficiently inhibited, it is silent, (2) when it is sufficiently excited, it bursts 
continuously, (3) between these extremes, the interburst interval is a continuous function 
of the membrane potential, (4) a transient excitation which causes the cell to fire between 
bursts can reset the bursting rhythm, and (5) a transient inhibition which prematurely ter­
minates a burst can also reset the bursting rhythm. 

These characteristics can be reproduced with our neural model through the addition of 
two intrinsic currents. IH is a depolarizing current which tends to pull the membrane po­
tential above threshold. IL is a hyperpolarizing current which tends to pull the membrane 
potential below threshold. These currents change according to the following rules: (1) 
IH is triggered whenever the cell goes above threshold or IL terminates, and it then re­
mains active for a fixed period of time, and (2) IL is triggered whenever IH terminates, 
and it then remains acti ve for a variable period of time whose duration is a function of the 
membrane potential. In our work to date, the voltage dependence of IL has been linear. 

LOCOMOTION 

An animal's ability to move around its environment is fundamental to many of its other 
behaviors. In most insects, this requirement is fulfilled by six-legged walking. Thus, this 
was the first capability we sought to provide to P. computatrix. Walking involves the 
generation of temporally patterned forces and stepping movements such that the insect 
maintains a steady forward motion at a variety of speeds without falling down. Though 
we do not address all of these issues here, it is worth pointing out that locomotion is an 
interesting adaptive behavior in its own right. An insect robustly solves this complex co­
ordination problem in real Lime in the presence of variations in load and terrain, develop­
mental changes, and damage to the walking apparatus itself [Graham, 1985]. 

LEG CONTROLLER 

The most basic components of walking are the rhythmic movements of each individual 
leg. These consist of a swing phase, in which the foot is up and the leg is swinging for­
ward, and a stance phase, in which the foot is down and the leg is swinging back, propel­
ling the body forward. In our controller, these rhythmic movements are produced by the 
leg controller circuit shown in Figure 3. There is one command neuron, C, for the entire 
controller and six copies of the remainder of this circuit, one for each leg. 

The rhythmic leg movements are primarily generated centrally by the portion of the leg 
controller shown in solid lines in Figure 3. Each leg is controlled by three motor neurons. 
The stance and swing motor neurons determine the force with which the leg is swung 
backward or forward, respectively, and the foot motor neuron controls whether the foot is 
up or down. Normally, the foot is down and the stance motor neuron is active, pushing 
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the leg back and producing a stance phase. Periodically, however, this state is interrupted 
by a burst from the pacemaker neuron P. This burst inhibits the foot and stance motor 
neurons and excites the swing motor neuron, lifting the foot and swinging the leg for­
ward. When this burst terminates, another stance phase begins. Rhythmic bursting in P 
thus produces the basic swing/stance cycle required for walking. The force applied dur­
ing each stance phase as well as the time between bursts in P depend upOn the level of ex­
citation supplied by the command neuron C. This basic design is based on the flexor 
burst-generator model of cockroach walking [pearson, 1976]. 

In order to properly time the transitions between the swing and stance phases, the control­
ler must have some information about where the legs actually are. The simplest way to 
provide this information is to add sensors which signal when a leg has reached an ex­
treme forward or backward angle, as shown with dashed lines in Figure 3. When the leg 
is all the way back, the backward angle sensor encourages P to initiate a swing by excit­
ing it. When the leg is all the way forward, the forward angle sensor encourages P to ter­
minate the swing by inhibiting it. These sensors serve to reinforce and fine-tune the cen· 
trally generated stepping rhythm. They were inspired by the hair plate receptors in P. 
americana, which seem LO playa similar role in its locomotion [Pearson, 1976]. 

The RC characteristics of our neural model cause delays at the end of each swing before 
the next stance phase begins. This pause produces a "jerky" walk which we sought to 
avoid. In order to smooth out this effect, we added a stance reflex comprised of the dot­
ted connections shown in Figure 3. This reflex gives the motor neurons a slight "kick" in 
the right direction to begin a stance whenever the leg is swung all the way forward and is 
also inspired by the cockroach [Pearson, 1976]. 
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Figure 4. Central Coupling between Pacemakers 

LOCOMOTION CONTROLLER 

In order for these six individual leg controllers to serve as the basis for a locomotion con­
troller, we must address the issue of stability. Arbitrary patterns of leg movements will 
not, in general, lead to successful locomotion. Rather, the movements of each leg must 
be synchronized in such a way as to continuously maintain stability. 

A good rule of thumb is that adjacent legs should be discouraged from swinging at the 
same time. As shown in Figure 4, this constraint was implemented by mutual inhibition 
between the pacemakers of adjacent legs. So, for example, when leg L2 is swinging, legs 
LI, L3 and R2 are discouraged from also swinging, but legs RI and R3 are unaffected (see 
Figure Sa for leg labelings). This coupling scheme is also derived from Pearson's (1976) 
work. 

The gaits adopted by the controller described above depend in general upon the initial an­
gles of the legs. To further enhance stability, it is desirable to impose some reliable order 
to the stepping sequence. Many animals exhibit a stepping sequence known as a metach­
ronal wave, in which a wave of stepping progresses from back to front. In insects, for ex­
ample, the back leg swings, then the middle one, then the front one on each side of the 
body. This sequence is achieved in our controller by slightly increasing the leg angle 
ranges of the rear legs, lowering their stepping frequency. Under these conditions, the 
rear leg oscillators entrain the middle and front ones, and produce metachronal waves 
[Graham, 1977]. 

RESULTS 

When this controller is embedded in the body of our simulated insect, it reliably produces 
successful walking. We have found that the insect can be made to walk at different 
speeds with a variety of gaits simply by varying the flring frequency of the command 
neuron C. Observed gaits range from the wave gait, in which the metachronal waves on 
each side of the body are very nearly separated, to the tripod gait, in which the front and 
back legs on each side of the body step with the middle leg on the opposite side. These 
gaits fall out of the interaction between the dynamics of the neural controller and the 
body in which it is embedded. 
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Figure S. (A) Description of Some Gaits Observed in Natural Insects (from [Wilson, 
1966]). (B) Selected Gaits Observed in P. computatrix. 

If the legs .are labeled as shown at the top of Figure Sa, then gaits may be conveniently 
described by their stepping patterns. In this representation, a black bar is displayed dur­
ing the swing phase of each leg. The space between bars represents the stance phase. 
Selected gaits observed in P. computatrix at different speeds are shown in Figure 5b as 
the command neuron firing frequency is varied from lowest (top) to highest (bottom). At 
the lower speeds, the metachronal waves on each ~ide of the body are very apparent. The 
metachronal waves can still be discerned in fas~r walks. However, they increasingly 
overlap as the stance phases shorten, until the tripod gait appears at the highest speeds. 
This sequence of gaits bears a strong resemblance to some of those that have beep de­
scribed for natural insects, as shown in Figure Sa [Wilson, 1966]. 

In order to study the robustness of this controller and to gain insight into the detailed 
mechanisms of its operation, we have begun a series of lesion studies. Such studies ex-
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amine the behavioral effects of selective damage to a neural controller. This study is still 
in progress and we only report a few preliminary results here. In general, we have been 
repeatedly surprised by the intricacy of the dynamics of this controller. For example, re­
moval of all of the forward angle sensors resulted in a complete breakdown of the 
metachronal wave at low speeds. However, at higher speeds, the gait was virtually unaf­
fected. Only brief periods of instability caused by the occasional overlap of the slightly 
longer than normal swing phases were observed in the tripod gait, but the insect did not 
fall down. Lesioning single forward angle sensors often dynamically produced compen­
satory phase shifts in the other legs. Lesions of selected central connections produced 
similarly interesting effects. In general, our studies seem to suggest subtle interactions 
between the central and peripheral components of the controller which deserve much 
more exploration. 

Finally, we have observed the phenomena of reflex stepping in P. computalrix. When the 
central locomotion system is completely shut down by strongly inhibiting the command 
neuron and the insect is continuously pushed from behind, it is still capable of producing 
an uncoordinated kind of walking. As the insect is pushed forward, a leg whose foot is 
down bends back until the backward angle sensor initiates a swing by exciting the pace­
maker neuron P. When the leg has swung all the way forward, the stance reflex triggered 
by the forward angle sensor puts the foot down and the cycle repeats. 

Brooks (1989) has described a semi-distributed locomotion controller for an insect-like 
autonomous robot. We are very much in agreement with his general approach. 
However, his controller is not as fully distributed as the one described above. It relies on 
a central leg lift sequencer which must be modified to produce different gaits. Donner 
(1985) has also implemented a distributed hexapod locomotion controller inspired by an 
early model of Wilson's (1966). His design used individual leg controllers driven by leg 
load and position information. These leg controllers were coupled by forward excitation 
from posterior legs. Thus, his stepping movements were produced by reflex-driven pe­
ripheral oscillators rather than the central oscillators used in our model. He did not report 
the generation of the series of gaits shown in Figure Sa. Donner also demonstrated the 
ability of his controller to adapt to a missing leg. We have experimented with leg ampu­
tations as well, but with mixed success. We feel that more accurate three-dimensional 
load information than we currently model is necessary for the proper handling of amputa­
tions. Neither of these other locomotion controllers utilize neural networks. 

CONCLUSIONS AND FUTURE WORK 

We have described a heterogeneous neural network for controlling the walking of a simu­
lated insect. This controller is completely distributed yet capable of reliably producing a 
range of statically stable gaits at different walking speeds simply by varying the tonic ac­
tivity of a single command neuron. Lesion studies have demonstrated that the controller 
is robust, and suggested that subtle interactions and dynamic compensatory mechanisms 
are responsible for this robustness. 

This controller is serving as the basis for a number of other behaviors. We have already 
implemented wandering, and are currently experimenting with controllers for recoil re-
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sponses and edge following. In the near future, we plan to implement feeding behavior 
and an escape response, resulting in what we feel is the minimum complement of behav­
iors necessary for survival in an insect-like environment Finally, we wish to introduce 
plasticity into these controllers so that they may better adapt to the exigencies of particu­
lar environments. We believe that learning is best viewed as a means by which additional 
flexibility can be added to an existing controller. 

The locomotion controller described in this paper was inspired by the literature on insect 
locomotion. The further development of P. compUlalrix will continue to draw inspiration 
from the neuroethology and neurobiology of simpler natural organisms. In trying to de­
sign autonomous organisms using principles gleaned from Biology, we may both im­
prove our understanding of natural nervous systems and discover design principles of use 
to the construction of artificial ones. A robot with "only" the behavioral repertoire and 
adaptability of an insect would be an impressive achievement indeed. In particular, we 
have argued in this paper for a more careful consideration of the intrinsic architecture and 
heterogeneity of biological nervous systems in the design of artificial neural networks. 
The locomotion controller we have described above only hints at how productive such an 
approach can be. 
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