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ABSTRACT 

This research involves a method for finding global maxima 
in constraint satisfaction networks. It is an annealing 
process butt unlike most otherst requires no annealing 
schedule. Temperature is instead determined locally by 
units at each updatet and thus all processing is done at the 
unit level. There are two major practical benefits to 
processing this way: 1) processing can continue in 'bad t 
areas of the networkt while 'good t areas remain stablet and 
2) processing continues in the 'bad t areast as long as the 
constraints remain poorly satisfied (i.e. it does not stop 
after some predetermined number of cycles). As a resultt 
this method not only avoids the kludge of requiring an 
externally determined annealing schedulet but it also finds 
global maxima more quickly and consistently than 
externally scheduled systems (a comparison to the 
Boltzmann machine (Ackley et alt 1985) is made). FinallYt 
implementation of this method is computationally trivial. 

INTRODUCTION 
A constraint satisfaction network, is a network whose units represent hypotheses, 
between which there are various constraints. These constraints are represented by bi­
directional connections between the units. A positive connection weight suggests that if 
one hypothesis is accepted or rejected, the other one should be also, and a negative 
connection weight suggests that if one hypothesis is accepted or rejected. the other one 
should not be. The relative importance of satisfying each constraint is indicated by the 
absolute size of the corresponding weight. The acceptance or rejection of a hypothesis is 
indicated by the activation of the corresponding unit Thus every point in the activation 
space corresponds to a possible solution to the constraint problem represented by the 
network. The quality of any solution can be calculated by summing the 'satisfiedn~ss' of 
all the constraints. The goal is to find a point in the activation space for which the quality 
is at a maximum. 
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Unfortunately, if units update dettnninistically (i.e. if they always move toward the state 
that best satisfies their constraints) there is no means of avoiding local quality maxima in 
the activation space. This is simply a fimdamental problem of all gradient decent 
procedures. Annealing systems attempt to avoid this problem by always giving units 
some probability of not moving towards the state Ihat best satisfaes their constraints. This 
probability is called the 'temperature' of the network. When the temperature is high, 
solutions are generally not good, but the network moves easily throughout the activation 
space. When the temperature is low, the network is committed to one area of the 
activation space, but it is very good at improving its solution within that area. Thus the 
annealing analogy is born. The notion is that if you start with the temperature high, and 
lower it slowly enough, the network will gradually replace its 'state mobility' with 'state 
improvement ability' , in such a way as to guide itself into a globally maximal state (much 
as the atoms in slowly annealed metals find optimal bonding structures). 

To search for solutions this way, requires some means of detennining a temperature for 
the network, at every update. Annealing systems simply use a predetennined schedule to 
provide this information. However, there are both practical and theoretical problems with 
this approach. The main practical problems are the following: 1) once an annealing 
schedule comes to an end. all processing is finished regardless of the quality of the 
current solution, and 2) temperature must be unifonn across the network, even though 
different parts of the network may merit different temperatures (this is the case any time 
one part of the network is in a 'better' area of the activation space than another, which is 
a natural condition). The theoretical problem with this approach involves the selection of 
annealing schedules. In order to pick an appropriate schedule for a network. one must 
use some knowledge about what a good solution for that network is. Thus in order to get 
the system to find a solution, you must already know something about the solution you 
want it to find. The problem is that one of the most critical elements of the process. the 
way that the temperature is decreased, is handled by something other than the network 
itself. Thus the quality of the fmal solution must depend. at least in part. on that system's 
understanding of the problem. 

By allowing each unit to control its own temperature during processing, Automatic Local 
Annealing avoids this serious kludge. In addition. by resolving the main practical 
problems. it also ends up fmding global maxima more quickly and reliably than 
externally controlled systems. 

MECHANICS 
All units take on continuous activations between a unifonn minimum and maximum 
value. There is also a unifonn resting activation for all units (between the minimum and 
maximum). Units start at random activations. and are updated synchronously at each 
cycle in one of two possible ways. Either they are updated via any ordinary update rule 
for which a positive net input (as defined below) increases activation and a negative net 
input decreases activation, or they are simply reset to their resting activation. There is an 
update probability function that detennines the probability of normal update for a unit 
based on its temperature (as defmed below). It should be noted that once the net input for 
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a unit has been calculated, rmding its temperature is trivial (the quantity (a; - rest) in the 
equation for g~ss; can come outside the summation). 

Definitions: 

= ~ .(a-rest)xw .. kJ "} IJ 

temperature; = -g~sS;l1ltlUpOsgdnssi 
g~ssilnuuneggdnssi 

if g~ss; ~ 0 
otherwise 

goodness; = Lj(a,rest)xwijx(arrest) 
1ItIUpOsgdnssi = the largest pos. v31ue that goodness; could be 
maxneggdnss; = the largest neg. value that goodness; could be 

Maxposgdnss and maxneggdnss are constants that can be calculated once for each unit at 
the beginning of simulation. They depend only on the weights into the unit, and the 
constant maximum, minimum and resting activation values. Temperature is always a 
value between 1 and -1, with 1 representing high temperature and -1 low. 

SIMULATIONS 
The parameters below were used in processing both of the networks that were tested. 
The first network processed (Figure la) has two local maxima that are extremely close. to 
its two global maxima. This is a very 'difficult' network in the sense that the search for a 
global maximum must be extremely sensitive to the minute difference between the global 
maxima and the next-best local maxima. The other network processed (Figure Ib) has 
many local maxima, but none of them are especially close to the global maxima. This is 
an 'easy' network in the sense that the slow and cautious process that was used, was not 
really necessary. A more appropriate set of parameters would have improved 
performance on this second network, but it was not used in order to illustrate the relative 
generality of the algorithm. 

Parameters: 

maximum activation = 1 

minimum activation = 0 

resting activation = O.S 

normal update rule: 

A activation; = netinput; x (moxactivation - activation;) x k 
netinput; x (activation; - minactivation) x k 

with'k = 0.6 

if netinput; ~ 0 
otherwise 



update probability fwlction: 

-I -.79 
o 
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This function defines a process that moves slowly towards a global maximum, moves 
away from even good solutions easily, and 'freezes' units that are colder than -0.79. 

RESULTS 
The results of running the Automatic Local Annealing process on these two networks (in 
comparison to a standard Boltzmann Machine's performance) are summarized in figures 
2a and 2b. With Automatic Local Annealing (ALA), the probability of having found a 
stable global maximum departs from zero fairly soon after processing begins. and 
increases smoothly up to one. The Boltzmann Machine, instead, makes little 'useful' 
progress until the end of the annealing schedule, and then quickly moves into a solution 
which mayor may not be a global maximum. In order to get its reliability near that of 
ALA, the Boltzmann Machine's schedule must be so slow that solutions are found much 
more slowly than ALA. Conversely in ordet to start finding solution as quickly as ALA. 
such a short schedule is necessary that the reliability becomes much worse than ALA's. 
Finally, if one makes a more reasonable comparison to the Boltzmann Machine (either by 
changing the parameters of the ALA process to maximize its performance on each 
network. or by using a single annealing schedule with the Boltzmann Machine for both 
networks). the overall performance advantage for ALA increases substantially. 

DISCUSSION 

HOW IT WORKS 

The characteristics of the approach to a global maximum are determined by the shape of 
the update probability function. By modifying this shape, one can control such things as: 
how quickly/steadily the network moves towards a global maximum, how easily it moves 
away from local maxima, how good a solution must be in order for it to become 
completely stable, and so on. The only critical feature of the function, is that as 
temperature decreases the probability of normal update increases. In this way, the colder 
a unit gets the more steadily .it progresses towards an extreme activation value, and the 
hoUrz a wit gets the more time it spends near resting activation. From this you get hot 



606 Leinbach 

1 

~5 ~5 

-2.5 -2.5 

1 

Figure la. A 'Difficult' Network. 

Global maxima are: 1) all eight upper units on, with the remaining units off, 2) all eight 
lower units on with the remaining units off. Next best local maxima are: 1) four uppel' 

left and four lower right units on, with the remaiiung units off, 2) four upper right and 
four lower left units on, with the remaining units off. 

-1.5 
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1 

1 

Figure lb. An 'Easy' Network. 

Necker cube network (McClelland & Rumelhart 1988). Each set of four corresponding 
units are connected as shown above. Connections for the other three such sets were 
omitted for clarity. The global maxima have all units in one cube on with all units in the 
other off. 
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Figure la. Performance On A 'Difficult' Network (Figure la). 
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Figure 2b. Performance On An 'Easy' Network (Figure Ib). 

I Each line is based on 100 trials. A stable global maxima is one that the network 
remained in for the rest of the trial. 

2 All annealing schedules were the best performing three-leg schedules found. 
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units that have little effect on movement in the activation space (since they conbibute 
little to any unit's net input), and cold units that compete to control this critical 
movement. 

The cold units 'coor connected units that are in agreement with them, and 'heat' 
connected units that are in disagreement (see temperature equation). As the connected 
agreeing units are cooled, they too begin to cool their connected agreeing units. In this 
way coldness spreads out. stabilizing sets d units whose hypotheses agree. This 
spreading is what makes the ALA algorithm wort. A units decision about its hypothesis 
can now be felt by units that are only distantly connected, as must be the case if units are 
to act in accordance with any global criterion (e.g. the overall quality d the states of 
these networks). 

In order to see why global maxima are found, one must consider the network as a whole. 
In general, the amount of time spent in any state is proportional to the amount of heat in 
that state (since heat is directly related to stability). The state(s) containing the least 
possible heat for a given network. will be the most stable. These state(s) will also 
represent the global maxima (since they have the least total 'dissatisfaction' of 
constraints). Therefore, given infinite processing time, the most commonly visited states 
will be the global maxima. More importantly, the 'visitedness.' of ~ry state will be 
proportional to its overall quality (a mathematical description of this has not yet been 
developed). 

This later characteristic provides good practical benefits, when one employs a notion of 
solution satisficing. This is done by using an update probability function that allows 
units to 'freeze' (i.e. have normal update pobabiUties of 1) at temperatures higher than-I 
(as was done with the simulations described above). In this condition, states can become 
completely stable, without perfectly satisfying all constraints. As the time of simulation 
increases, the probability of being in any given state approaches approaches a value 
proportional to its quality. Thus, if there are any states good enough to be frozen, the 
chances of not having hit one will decrease with time. The amount of time necessary to 
satisfice is directly related to the freezing point used. Times as small as 0 (for freezing 
points> 1) and as large as infmity (for freezing points < -1) can be achieved. This type 
of time/quality trade-off, is extremely useful in many practical applications. 

MEASURING PERFORMANCE 

While ALA finds global maxima faster and more reliably than Boltzmann Machine 
annealing, these are not the only benefits to ALA processing. A number of othex 
elements make it preferable to externally scheduled annealing processes: 1) Various 
solutions to subparts of problems are found and, at least temporarily, maintained during 
processing. If one considers constraint satisfaction netwOJks in terms of schema 
processors, this corresponds nicely to the simultaneous processing of all levels of 
scbemas and subschemas. Subschemas with obvious solutions get filled in quickly, even 
when the higher level schemas have still not found real solutions. While these initial 
sub-solutions may not end up as part of the final solution, their appearance during 
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processing can still be quite useful in some settings. 2) ALA is much more biologically 
feasible than externally scheduled systems. Not only can units flDlCtion on their own 
(without the use of an intelligent external processor), but the paths travened through the 
activation space (as described by the schema example above) also parallel human 
processing more closely. 3) ALA processing may lend itself to simple learning 
algorithms. During processing, units are always acting in close accord with the 
constraints that are present At fU'St distant corwtraint are ignmed in favor of more 
immediate ones, but regardless the units rarely actually defy any constraints in the 
network. Thus basic approaches to making weight adjustments, such as continuously 
increasing weights between units that are in agreement about their hypotheses, and 
decreasing weights between units that are in disagreement about their hypotheses 
(Minsky & Papert, 1968), may have new power. This is an area of current ~h, 
which would represent an enonnous time savings over Boltzmann Machine type learning 
(Ackley et at 1985) if it were to be found feasible. 
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