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ABSTRACT 
The primate visual system learns to recognize the true direction of 
pattern motion using local detectors only capable of detecting the 
component of motion perpendicular to the orientation of the 
moving edge. A multilayer feedforward network model similar to 
Linsker's model was presented with input patterns each consisting 
of randomly oriented contours moving in a particular direction. 
Input layer units are granted component direction and speed tuning 
curves similar to those recorded from neurons in primate visual 
area VI that project to area MT. The network is trained on many 
such patterns until most weights saturate. A proportion of the 
units in the second layer solve the aperture problem (e.g., show the 
same direction-tuning curve peak to plaids as to gratings), 
resembling pattern-direction selective neurons, which ftrst appear 
inareaMT. 

INTRODUCTION 
Supervised learning schemes have been successfully used to learn a variety of input­
output mappings. Explicit neuron-by-neuron error signals and the apparatus for 
propagating them across layers, however, are not realistic in a neurobiological 
context. On the other hand, there is ample evidence in real neural networks for 
conductances sensitive to correlation of pre- and post-synaptic activity, as well as 
multiple areas connected by topographic, somewhat divergent feedforward 
projections. The present project was to try to learn the solution to the aperture 
problem for pattern motion using a simple hebb rule and a layered feedforward 
network. 

Some of the connections responsible for the selectivity of cortical neurons to local 
stimulus features develop in the absence of pattered visual experience. For example, 
newborn cats and primates already have orientation-selective neurons in primary 
visual cortex (area 17 or VI), before they open their eyes. The prenatally generated 
orientation selectivity is sharpened by subsequent visual experience. Linsker (1986) 
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has shown that feedforward networks with somewhat divergent, topOgraphic 
interlayer connections, linear summation, and simple hebb rules develop units in 
tertiary and higher layers that have parallel, elongated excitatory and inhibitory 
sub fields when trained solely on random inputs to the frrst layer. 

By contrast, the development of the circuitry in secondary and tertirary visual 
cortical areas necessary for processing more complex, non-local features of visual 
arrays--e.g., orientation gradients, shape from shading, pattern translation, dilation, 
rotation--is probably much more dependent on patterned visual experience. Parietal 
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visual cortical areas, for example, 
are almost totally unresponsive in 
dark-reared monkeys, despite the fact 
that these monkeys have a normal­
appearing VI (Hyvarinen, 1984). 
Behavioral indices suggest that 
development of some perceptual 
abilities may require months of 
experience. Human babies, for 
example, only evidence seeing the 
transition between randomly moving 
dots and circular 2-D motion at 6 
months, while the transition from 
horizontally moving dots with 
random x -axis velocities to dots 
with sinusoidally varying X-axIS 
velocities (the latter gives the 
percept of a rotating 3-D cylinder) is 
only detected after 7 months (Spitz, 
Stiles-Davis, & Siegel, 1988) (see 
Fig. 1). 

Figure 1. Motion field transitions During the first 6 months of its life, 
a human baby typically makes 

approximately 30 million saccades, experiencing in the process many views which 
contain large moving fields and smaller moving objects. The importance of these 
millions of glances for the development of the ability to recognize complex visual 
objects has often been acknowledged. Brute visual experience may. however. be just 
as important in developing a solution to the simpler problem of detecting pattern 
motion using local cues. 

NETWORK ARCHITECTURE 
Moving visual stimuli are processed in several stages in the primate visual system. 
The first cortical stage is layer 4C-alpha of area VI, which receives its main 
ascending input from the magnocellular layers of the lateral geniculate nucleus. 
Layer 4C-alpha projects to layer 4B, which contains many tightly-tuned direction­
selective neurons (Movshon et aI., 1985). These neurons, however, respond to 
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moving contours as if these contours were moving perpendicular their local 
orientation--Le .• they fire in proportion to the difference between the orthogonal 
component of motion and their best direction (for a bar). An orientation series run 
for a layer 4B nemon using a plaid (2 orthogonal moving gratings) thus results in 
two peaks in the direction tuning curve. displaced 45 degrees to either side of the 
peak for a single grating (Movshon et al.. 1985). The aperture problem for pattern 
motion (see e.g .• Horn & Schunck. 1981) thus exists for cells in area VI of the 
adult (and presumably infant) primate. 

Layer 4B neurons project topographically via direct and indirect pathways to area 
MT. a small exttastriate area specialized for processing moving stimuli. A subset 
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Figure 2. Network Architecture 

of neurons in MT show a single peak in their direction tuning curves for a plaid that 
is lined up with the peak for a single grating--Le., they fire in proportion to the 
difference between the true pattern direction and their best direction (for a bar). 
These neurons therefore solve the aperture problem presented to them by the local 
translational motion detectors in layer 4B of VI. The excitatory receptive fields of 
all MT neurons are much larger than those in VI as a result of divergence in the VI­
MT projection as well as the smaller areal extent of MT compared to VI. 

M.E. Sereno (1987) showed using a supervised learning rule that a linear t two layer 
network can satisfactorily solve the aperture problem characterized above. The 
present task was to see if unsupervised learning might suffice. A simple caraicature 
of the Vl-to-MT projection was constructed. At each x-y location in the first 
layer of the network. there are a set of units tuned to a range of local directions and 
speeds. The input layer thus has four dimensions. The sample network illustrated 
above (Fig. 2) has 5 different directions and 3 speeds at each x-y location. Input 
units are granted tuning curves resembling those found for neurons in layer 4B of 
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Figure 3. Excitatory Tuning 
Curves (1st layer) 
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area VI. The tuning curves are linear. with half-height overlap for both direction 
and speed (see Fig. 3--for 12 directions and 4 speeds). and direction and speed tuning 
interact linearly. Inhibition is either tuned or untuned (see Fig. 4). and scaled to 
balance excitation. Since direction tuning wraps around. there is a trough in the 
tuned inhibition condition. Speed tuning does not wrap around. The relative effect 
of direction and speed tuning in the output of ftrst layer units is set by a parameter. 

As with Linsker. the probability that a unit in the fust layer will connect with a 
unit in the second layer falls off as a gaussian centered on the retinotopically 
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Figure 4. Tuned vs. Untuned Inhibition 
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equivalent point in the second layer (see Fig. 2). New random numbers are drawn to 
generate the divergent gaussian projection pattern for each first layer unit (Le., all 
of the units at a single x-y location have different. overlapping projection 
patterns). There are no local connections within a layer. 

The network update rule is similar to that of Linsker except that there is no term 
like a decay of synaptic weights (k1) and no offset parameter for the correlations 
(k,J. Also, all of the units in each layer are modeled explicitly. The activation, Yj' 

for each unit is a linear weighted sum of its Ui inputs, scaled by a, and clipped to a 

maximum or minimum value: 

{
a I. u· w·· I I) 

y. = 
) 

Ymax.min 

Weights are also clipped to maximum and minimum values. The change in each 
weight. .1wij, is a simple fraction, a, of the product of the pre- and post-synaptic 
values: 

.1w·· = au·y· I) I ) 

RESULTS 
The network is tr:ained with a set of fullfield texture movements. Each stimulus 
consists of a set of randomly oriented contours--one at each x-y point--all moving 
in the same, randomly chosen pattern direction. A typical stimulus is drawn in 
figure 5 as the set of component motions visible to neurons in VI (i.e .• direction 
components perpendicular to the local contour); the local speed component varies as 
the cosine of the angle between the pattern direction and the perpendicular to the 
local contour. The single component motion at each point is run through the first 
layer tuning curves. The response of the input layer to such a pattern is shown in 
Figure 6. Each rectangular box represents a single x-y location, containing 48 units 
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Figure 6. Output of Portion of First Layer to a 
Training Slimulus (untuned inhibition) 

tuned to different combinations of direction and speed (12 directions run 
horizontally and 4 speeds run vertically). Open and filled squares indicate positive 

and negative outputs. Inhibition is untuned here. The hebb sensitivity, a, was set so 
that 1,000 such patterns could be presented before most weights saturated at 
maximum values. Weights intially had small random values drawn from a flat 
distribution centered around zero. The scale parameter for the weighted sum, a, 
was set low enough to prevent second layer units from saturating all the time. In 
Figure 6, direction tuning is 2.5 times as important as speed tuning in detennining 
the output of a unit 

Selectivity of second layer units for pattern direction was examined both before and 
after training using four stimulus conditions: 1) grating--contours perpendicular to 
pattern direction, 2) random grating--contours randomly oriented with respect to 
pattern direction (same as the training condition), 3) plaid--contours oriented 45 or 
67 degrees from perpendicular to pattern direction, 4) random plaid--contours 
randomly oriented, but avoiding angles nearly perpendicular to pattern direction. 
The pre-training direction tuning curves for the grating conditions usually showed 
some weak direction selectivity. Pre-training direction tuning curves for the plaid 
conditions, however, were often twin-peaked, exhibiting pattern component 
responses displaced to either side of the grating peak. Mter training, by contrast, 
the direction tuning peaks in all test conditions were single and sharp, and the plaid 
condition peaks were usually aligned with the grating peaks. 

An example of the weights onto a mature pattern direction selective unit is shown 
in Figure 7. As before, each rectangular box contains 48 units representing one 
point in x-y space of the input layer (the tails of the 2-D gaussian are cropped in 
this illustration), except that the black and white boxes now represent negative and 
positive weights onto a single second layer unit. Within each box, 12 directions run 
horizontally and 4 speeds run vertically. The peaks in the direction tuning curves 
for gratings and 135 degree plaids for this unit were sharp and aligned. 
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Figure 7. Mature Weights Onto Pattern 
Direction-Selective Unit 

Pattern direction selective units such as this comprised a significant fraction of the 
second layer when direction tuning was set to be 2 to 4 times as important as speed 
tuning in determining the output of fU'St layer units. Post-training weight 
structures under these conditions actually formed a continuum--from units with 
component direction selectivity, to units with pattern direction selectivity, to units 
with component speed selectivity. Not surprisingly, varying the relative effects of 
direction and speed in the VI tuning curves generated more direction-tuned-only or 
speed-tuned-only units. In all conditions, units showed clear boundaries between 
maximum and minimum weights in the direction-speed subspace each x-y point, and 
a single best direction. The location of these boundaries was always correlated 
across different x-y input points. Most units showing unambiguous pattern 
direction selectivity were characterized by two oppositely sloping diagonal 
boundaries between maximum and minimum weights in direction-speed subspace (see 
e.g., Fig. 7). 

The stimuli used to train the network above--fullfield movrnents of a rigid texture 
field of randomly oriented contours--are unnatural; generally, there may be one or 
more objects in the field moving in different directions and at different speeds than 
the surround. Weight distributions needed to solve the aperture problem appear 
when the network. is trained on occluding moving objects against moving 
backgrounds (object and background velocities chosen randomly on each trial), as 
long as the object is made small or large relative to the receptive field size. The 
solution breaks down when the moving objects occupy a significant fraction of the 
area of a second layer receptive field. 
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For comparison, the network was also trained using two different kinds of noise 
stimuli. In the fIrst condition (unit noise), each new stimulus consisted of random 
input values on each input unit With other network parameters held the same, the 
typical mature weight pattern onto a second layer unit showed an intimate 
intermixture of maximum and minimum weights in the direction-speed subspace at 
each x-y location. In the second condition (direction noise), each new stimulus 
consisted of a random direction at each x-y location. The mature weight patterns 
now showed continuous regions of all-maximum or all-minimum weights in the 
speed-direction supspace at each x-y point. In contrast to the situation with 
fullfieid texture movement stimuli, however, the best directions at each of the x-y 
points providing input to a given unit were uncorrelated. In addition, multiple best 
directions at a single x-y point sometimes appeared. 

DISCUSSION 
This simple model suggests that it may be possible to learn the solution to the 
aperture problem for pattern motion using only biologically realistic unsupervised 
learning and minimally structured motion fields. Using a similar network 
architecture, M.E. Sereno had previously shown that supervised learning on the 
problem of detecting pattern motion direction from local cues leads to the 
emergence of chevron shaped weight structures in direction-speed space (M.E. 
Sereno, 1986). The weight structures generated here are similar except that the 
inside or outside of the chevron is filled in, and upside-down chevrons are more 
common. This results in decreased selectivity to pattern speed in the second layer. 

The model needs to be extended to more complex motion correlations in the input-­
e.g., rotation, dilation, shear, multiple objects, flexible objects. MT in primates 
does not respond selectively to rotation or dilation, while its target area MST does. 
Thus, biological estimates of rotation and dilation are made in two stages--rotation 
and dilation are not detected locally, but instead constructed from estimates of local 
translation. Higher layers in the present model may be able to learn interesting 
'second-order' things about rotation, dilation, segmentation, and transparency. 

The real primate visual system, of course, has a great many more parts than this 
model. There are a large number of interconnected cortical visual areas--perbaps as 
many as 25. A substantial portion of the 600 possible between-area connections may 
be present (for review, see M.I. Sereno, 1988). There are at least 6 map-like visual 
structures, and several more non-retinotopic visual structures in the thalamus 
(beyond the dLGN) that interconnect with the cortical visual areas. Each visual 
cortical area then has its own set of layers and intedayer connections. The most 
unbiological aspect of this model is the lack of time and the crude methods of gain 
control (clipped synaptic weights and input/output functions). Future models 
should employ within-area connections and time-dependent hebb rules. 

Making a biologically realistic model of intermediate and higher level visual 
processing is difficult since it ostensibly requires making a biologically realistic 
model of earlier, yet often not less complex stations in the system--e.g., the retina, 
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dLGN, and layer 4C of primary visual cortex in the present case. One way to avoid 
having to model all of the stations up to the one of interest is to use physiological 
data about how the earlier stations respond to various stimuli, as was done in the 
present model. This shortcut is applicable to many other problems in modeling the 
visual system. In order for this to be most effective, physiologists and modelers 
need to cooperate in generating useful libraries of response profiles to arbitrary 
stimuli. Many stimulus parameters interact, often nonlinearly, to produce the final 
output of a cell. In the case of simple moving stimuli in VI and MT, we 
minimally need to know the interaction between stimulus size, stimulus speed, 
stimulus direction, surround speed, surround direction, and x-y starting point of the 
movement relative to the classical excitatory receptive field. Collecting this many 
response combinations from single cells requires faster serial presentation of stimuli 
is customary in visual physiology experiments. There is no obvious reason, 
however, why the rate of stimulus presentation need be any less than the rate at 
which the visual system nonnally operates--namely, 3-5 new views per second. 

Also, we need to get a better understanding of the 'stimulus set'. The very large set 
of stimuli on which the real visual system is trained (millions of views) is still 
very poorly characterized. It would be worthwhile and practical, nevertheless, to 
collect a naturalistic corpus of perhaps 1000 views (several hours of viewing). 
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