
AN ADAPTIVE NETWORK THAT LEARNS
SEQUENCES OF TRANSITIONS

C. L. Winter

Science Applications International Corporation
5151 East Broadway, Suite 900

Tucson, Auizona 85711

ABSTRACT

We describe an adaptive network, TIN2, that learns the transition
function of a sequential system from observations of its behavior. It
integrates two subnets, TIN-I (Winter, Ryan and Turner, 1987) and
TIN-2. TIN-2 constructs state representations from examples of
system behavior, and its dynamics are the main topics of the paper.
TIN-I abstracts transition functions from noisy state representations
and environmental data during training, while in operation it produces
sequences of transitions in response to variations in input. Dynamics
of both nets are based on the Adaptive Resonance Theory of Carpenter
and Grossberg (1987). We give results from an experiment in which
TIN2 learned the behavior of a system that recognizes strings with an
even number of l's .

INTRODUCTION

Sequential systems respond to variations in their input environment with sequences of
activities. They can be described in two ways. A black box description characterizes a
system as an input-output function, m = B(u), mapping a string of input symbols, ll,
into a single output symbol, m. A sequential automaton description characterizes a
system as a sextuple (U, M, S, SO, f, g) where U and M are alphabets of input and output

symbols, S is a set of states, sO is an initial state and f and g are transition and output

functions respectively. The transition function specifies the current state, St, as a

function of the last state and the current input, Ut,

(1)

In this paper we do not discuss output functions because they are relatively simple. To
further simplify discussion, we restrict ourselves to binary input alphabets, although the
neural net we describe here can easily be extended to accomodate more complex alphabets.

653

654 Winter

A common engineering problem is to identify and then simulate the functionality of a
system from observations of its behavior. Simulation is straightforward when we can
actually observe the internal states of a system, since then the function f can be specified
by learning simple associations among internal states and external inputs. In robotic
systems, for instance, internal states can often be characterized by such parameters as
stepper motor settings, strain gauge values, etc., and so are directly accessible. Artificial
neural systems have peen found useful in such simulations because they can associate
large, possibly noisy state space and input variables with state and output variables (Tolat
and Widrow, 1988; Winter, Ryan and Turner, 1987).

Unfortunately, in many interesting cases we must base simulations on a limited set of
examples of a system's black box behavior because its internal workings are
unobservable. The black box description is not, by itself, much use as a simulation tool
since usually it cannot be specified without resorting to infinitely large input-output
tables. As an alternative we can try to develop a sequential automaton description of the
system by observing regularities in its black box behavior. Artificial neural systems can
contribute to the development of physical machines dedicated to system identification
because i) frequently state representations must be derived from many noisy input
variables, ii) data must usually be processed in continuous time and iii) the explicit
dynamics of artificial neural systems can be used as a framework for hardware
implementations.

In this paper we give a brief overview of a neural net, TIN2, which learns and processes
state transitions from observations of correct black box behavior when the set of
observations is large enough to characterize the black box as an automaton. The TIN2
net is based on two component networks. Each uses a modified adaptive resonance circuit
(Carpenter and Grossberg, 1987) to associate heterogeneous input patterns. TIN-1
(Winter, Ryan and Turner, 1987) learns and executes transitions when given state
representations. It has been used by itself to simulate systems for which explicit state
representations are available (Winter, 1988a). TIN-2 is a highly parallel, continuous time
implementation of an approach to state representation first outlined by Nerode (1958).

Nerode's approach to system simulation relies upon the fact that every string, l!. moves a
machine into a particular state, s(y). once it has been processed. The s(y) state can be
characterized by putting the system initially into s(u) (by processing y) and then
presenting a set of experimental strings. (~1 , ~n)' for further processing.

Experiments consist of observing the output mi = BUt·~i) where • indicates

concatenation. A state can then be represented by the entries in a row of a state
characterization table, C (Table 1). The rows of C are indexed by strings, lI, its columns
are indexed by experiments. Wi. and its entries are mi. In Table 1 annotations in

parentheses indicate nodes (artificial neurons) and subnetworks of TIN-2 equivalent to the
corresponding C table entry. During experimentation C expands as states are

Adaptive Network That Learns Sequences of Transitions 655

distinguished from one another. The orchestration of experiments, their selection, the

TABLE 1. C Table Constructed by TIN-2

A. o (Assembly 1) 1 (Assembly 2)

A. 1 (Node 7) o (Node 2) o (Node 5)
1 o (Node 6) o (Node 9) 1 (Node 1)
0 o (Node 1) 1 (Node 6) o (Node 4)
10 o (Node 3) o (Node 2) o (Node 0)

role of teachers and of the environment have been investigated by Arbib and Zeiger
(1969), Arbib and Manes (1974), Gold (1972 and 1978) and Angluin (1987) to name a
few. TIN-2 provides an architecture in which C can be embedded and expanded as
necessary. Collections of nodes within TIN-21earn to associate triples (mi, 11, ~i) so that

inputting II later results in the output of the representation (m 1, ... , mn)n of the state

associated with 11.

TIN-2

TIN-2 is composed of separate assemblies of nodes whose dynamics are such that each
assembly comes to correspond to a column in the state characterization table C. Thus we
call them column-assemblies. Competition among column-assemblies guarantees that
nodes of only one assembly, say the ith, learn to respond to experimental pattern ~i'
Hence column-assemblies can be labelled ~ 1 ' ~2 and so on, but since labelings are not

assigned ahead of time, arbitrarily large sets of experiments can be learned.

The theory of adaptive resonance is implemented in TIN-2 column-assemblies through
partitioned adaptive resonance circuits (cf. Ryan, Winter and Turner, 1987). Adaptive
resonance circuits (Grossberg and Carpenter, 1987; Ryan and Winter, 1987) are composed
of four collections of nodes: Input, Comparison (FI), Recognition (F2) and Reset. In

TIN-2 Input, Comparison and Reset are split into disjoint m,.u and ~ partitions. The net
runs in either training or operational mode, and can move from one to the other as
required. The training dynamics of the circuit are such that an F2 node is stimulated by

the overall triple (m. n,~, but can be inhibited by a mismatch with any component.
During operation input of.u recalls the state representation s(u) = (m 1 , mn)n'

Node activity for the kth FI partition, FI k' k = m, u, W, is governed by ,

(2)

Here t < 1 scales time, Ii,k is the value of the ith input node of partition k, xi,k is

656 Winter

activity in the corresponding node of FI and f is a sigmoid function with range [0. 1].

The elements of I are either 1. -lor O. The dynamics of the TIN-2 circuit are such that 0
indicates the absence of a symbol, while 1 and -1 represent elements of a binary alphabet.
The adaptive feedback filter. T. is a matrix (Tji) whose elements. after training. are also

1.-1 orO.

Activity, yj. in the jth F2 node is driven by

+ L meFl,m Bmj h(xm)] - 4[~*j f(YTl) + Ruj + Rw] . (3)

The feedforward fllter B is composed of matrices (Buj)' (Bmj) and (Bw) whose elements

are normalized to the size of the patterns memorized. Note that (Bw) is the same for

every node in a given column-assembly. i.e. the rows of (Bw) are all the same. Hence all

nodes within a column-assembly learn to respond to the same experimental pattern. w.
and it is in this sense that an assembly evolves to become equivalent to a column in table
C. During training the sum ~*j f(YTl) in (3) runs through the recognition nodes of all

TIN-2 column-assemblies. Thus. during training only one F2 node. say the Jth. can be

active at a time across all assemblies. In operation. on the other hand. we remove
inhibition due to nodes in other assemblies so that at any time one node in each
column-assembly can be active. and an entire state representation can be recalled.

The Reset terms Ru,j and Rw in (3) actively inhibit nodes of F2 when mismatches

between memory and input occur. Ruj is specific to the jth F2 node.

dRujldt = -Ruj + f(Yj) f(v 1I1u II - II £I.u II) . (4)

Rw affects all F2 nodes in a column-assembly and is driven by

dRw/dt = -Rw + [LjeF2 f(Yj)] f(v IIlw II-II fI.w II). (5)

v < 1 is a vigilance parameter (Carpenter and Grossberg. 1987): for either (4) or (5) R > 0
at equilibrium just when the intersection between memory and input. PI = T n I. is

relatively small, i.e. R > 0 when v 11111 > II PI II. When the system is in operation. we

fix Rw = 0 and input the pattern Iw = O. To recall the row in table C indexed by 11, we

input 11 to all column-assemblies. and at equilibrium xi.m = Lje F2 Tjif(Yj). Thus xi,m

represents the memory of the element in C corresponding to 11 and the column in C with
the same label as the column-assembly. Winter (1988b) discusses recall dynamics in
more detail.

Adaptive Network That Learns Sequences of Transitions 657

At equilibrium in either training or operational mode only the winning F2 node has YJ *­
O. so LjTjif(Yj) = TJi in (2). Hence xi.k = 0 if TJi = -li.k. i.e. if memory and input

mismatch; IXi.kl = 2 if TJi = Ii,k. i.e. when memory and input match; and IXi.kl = 1 if

TJ.i = O. Ii.k *- 0 or ifTJ.i *- O. Ii.k = O. The F1 output function h in (3) is defined so

that hex) = 1 if x> 1. hex) = -1 if x < -1 and hex) = 0 if -1 S x S 1. The output pattern
~1 = (h(x1) h(xnl» reflects IJ ('\ Ik. as h(xi) *- 0 only if TJi = Ii.k.

The adaptive filters (Buj) and (Bmj) store normalized versions of those patterns on FI.u

and F1.m which have stimulated the jth F2 node. The evolution of Bij for u E FI.u or

F1 m is driven by
•

(6)

On the other hand (Bw) stores a normalized version of the experiment w which labels the

entire column-assembly. Thus all nodes in a column-assembly share a common memory
of~.

(7)

where w E F1 w .
•

The feedback mters (T uj). (T mj) and (T w) store exact memories of patterns on partitions

ofFI:

(8)

for i E FI.u • F1.m • and

(9)

for i E FI.w' In operation long-term memory modification is suspended.

EXPERIMENT

Here we report partial results from an experiment in which TlN-2 learns a state
characterization table for an automaton that recognizes strings containing even numbers of

. .

658 Winter

both I's and O's. More details can be found in Winter (1988b). For notational
convenience in this section we will discuss patterns as if they were composed of l's and
O's, but be aware that inside TIN-2 every 0 symbol is really a -1. Data is provided in the
form of triples eM, ll, YD by a teacher; the data set for this example is given in Table 1.
Data were presented to the net in the order shown. The net consisted of three
column-assemblies. Each F2 collection contained ten nodes. Although the strings that

can be processed by an automaton of this type are in principle arbitrarily long, in practice
some limitation on the length of training strings is necessary if for no other reason than
that the memory capacity of a computer is finite. For this simple example Input and F I

partitions contain eight nodes, but in order to have a special symbol to represent A..
strings are limited to at most six elements. With this restriction the A. symbol can be
distinguished from actual input strings through vigilance criteria. Other solutions to the
problem of representing A. are being investigated, but for now the special eight bit
symbol, 00000011, is used to represent A. in the strings A.-yt.

The net was trained using fast-learning (Carpenter and Grossberg, 1987): a triple in Table
1 was presented to the net. and all nodes were allowed to come to their equilibrium values
where they were held for about three long-term time units before the next triple was
presented. Consider the processing that follows presentation of (0, 1,0) the first datum
in Table 1. The net can obtain equivalents to two C table entries from (0, 1,0): the entry
in row 1l = 10, column Yi. = A. and the entry in row II =1, column w = O. The string 10
and the membership value 0 were displayed on the A. assembly's input slabs, and in this
case the 3rd F2 node learned the association among the two patterns. When the pattern

(0, 1, 0) was input to other column-assemblies, one F2 node (in this case the 9th in

column-assembly 1) learned to associate elements of the triple. Of course a side effect of
this was that column-assembly 1 was labelled by Yi.. = 0 thereafter. When (1. 1, 1) was
input next, node 9 in column-assembly 1 tried to respond to the new triple, all nodes in
column-assembly 1 were then inhibited by a mismatch on Yi.., and finally node 1 on
column-assembly 2 learned (1, 1, 1). From that point on column-assembly 2 was
labelled by 1.

LEARNING TRANSITIONS

The TIN-I net (Winter. Ryan and Turner, 1987) is composed of i) a partitioned adaptive
resonance circuit with dynamics similar to (2) - (9) for learning state transitions and ii) a
Control Circuit which forces transitions once they have been learned. Transitions are
unique in the sense that a previous state and current input completely determine the
current state. The partitioned adaptive resonance circuit has three input fields: one for the
previous state, one for the current input and one for the next state. TIN-l's F2 nodes

learn transitions by associating patterns in the three input fields. Once trained. TIN-l
processes strings sequentially. bit-by-bit.

Adaptive Network That Learns Sequences of Transitions 659

1L~r--T-'N---2 -~:t ~ TIN-l TIN-2 I~ u.eu

Figure 1. Training TIN2.

The architecture of TIN2, the net that integrates TIN-2 and TIN-I. is shown in Figure 1.
The system resorts to the TIN-2 nets only to learn transitions. If TIN-2 has learned a C
table in which examples of all transitions appear, TIN-I can easily learn the automaton's
state transitions. A C table contains an example of a transition from state si to state Sj

forced by current input u, if it contains i) a row labelled by a string lli which leaves the

automaton in si after processing and ii) a row labelled by the string lltu which leaves the

automaton in Sj. To teach TIN-l the transition we simply present lli to the lower TIN-2

in Figure I, llieu to the upper TIN-2 net and u to TIN-I.

CONCLUSIONS

We have described a network, TIN-2, which learns the equivalent of state characterization
tables (Gold, 1972). The principle reasons for developing a neural net implementation are
i) neural nets are intrinsically massively parallel and so provide a nice model for systems
that must process large data sets, ii) although in the interests of brevity we have not
stressed the point, neural nets are robust against noisy data, iii) neural nets like the
partitioned adaptive resonance circuit have continuous time activity dynamics and so can
be synchronized with other elements of a larger real-time system through simple scaling
parameters, and iv) the continuous time dynamics and precise architectural specifications
of neural nets provide a blueprint for hardware implementations.

We have also sketched a neural net, TIN2, that learns state transitions by integrating
TIN-2 nets with the TIN-I net (Winter, Ryan and Turner, 1987). When a complete state
characterization table is available from TIN-2, TIN2 can be taught transitions from
examples of system behavior. However, the ultimate goal of a net like this lies in
developing a system that "or,rates acceptably" with a partial state characterization table.
To operate acceptably TIN must perform transitions correctly when it can, recognize
when it cannot, signal for new data when it is required and expand the state charcterization
taole when it must. Happily TIN2 already provides the first two capabilities, and
combinations of TIN2 with rule-based controllers and with auxiliary control networks are
currently being explored as approachws to satisfy the latter (Winter, 1988b).

Nets like TIN2 may eventually prove useful as control elements in physical machines
because sequential automata can respond to unpredictable environments with a wide range
of behavior. Even very simple automata can repeat activities and make decisions based
upon environmental variations. Currently, most physical machines that make decisions
are dedicated to a single task; applying one to a new task requires re-programming by a

660 Winter

skilled technician. A programmer must, furthermore, determine a priori precisely which
machine state - environment associations are significant enough to warrant insertion in
the control structure of a given machine. TIN2, on the other hand, is trained, not
programmed, and can abstract significant associations from noisy input. It is a "blank
slate" that learns the structure of a particular sequential machine from examples.

References

D. Angluin, "Learning Regular Sets from Queries and Counterexamples", Information
and Computation, 75 (2), 1987.
M. A. Arbib and E. G. Manes, "Machines in a Category: an Expository Introduction",
SIAM Review, 16 (2), 1974.
M. A. Arbib and H. P. Zeiger, "On the Relevance of Abstract Algebra to Control
Theory", Automatica, 5, 1969.
G. Carpenter and S. Grossberg, "A Massively Parallel Architecture for a Self-Organizing
Neural Pattern Recognition Machine", Comput. Vision Graphics Image Process. 37 (54),
1987.
E. M. Gold, "System Identification Via State Characterization", Automatica, 8, 1972.
E. M. Gold, "Complexity of Automaton Identification from Given Data", Info. and
Control, 37, 1978.
A. Neroda, "Linear Automaton Transformations", Proc. Am. Math. Soc., 9, 1958.
T. W. Ryan and C. L. Winter, "Variations on Adaptive Resonance", in Proc. 1st IntI.
Conf. on Neural Networks, IEEE, 1987.
T. W. Ryan, C. L. Winter and C. J. Turner, "Dynamic Control of an Artificial Neural
System: the Property Inheritance Network", Appl. Optics, 261 (23) 1987.
V. V. Tolat and B. Widrow, "An Adaptive Neural Net Controller with Visual Inputs",
Neural Networks, I, S upp I, 1988.
C. L. Winter, T. W. Ryan and C. J. Turner, "TIN: A Trainable Inference Network", in
Proc. 1st Inti. Conf. on Neural Networks, 1987.
C. L. Winter, "An Adaptive Network that Flees Pursuit", Neural Networks, I, Supp.l,
1988a.
C. L. Winter, "TIN2: An Adaptive Controller", SAIC Tech. Rpt., SAIC, 5151 E.
Broadway, Tucson, AZ, 85711, 1988b.

Part V
Implementation

