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ABSTRACT 

SYREN is a connectionist model that uses temporal information 
in a speech signal for syllable recognition. It classifies the rates 
and directions of formant center transitions, and uses an adaptive 
method to associate transition events with each syllable. The 
system uses explicit spatial temporal representations through de­
lay lines. SYREN uses implicit parametric temporal representa­
tions in formant transition classification through node activation 
onset, decay, and transition delays in sub-networks analogous to 
visual motion detector cells. SYREN recognizes 79% of six repe­
titions of 24 consonant-vowel syllables when tested on unseen 
data, and recognizes 100% of its training syllables. 

INTRODUCTION 

Living organisms exist in a dynamic environment. Problem solving systems, both 
natural and synthetic, must relate and interpret events that occur over time. 
Although connectionist models are based on metaphors from the brain, few have 
been designed to capture temporal and sequential information common to even 
the most primitive nervous systems. Yet some of the most popular areas of appli­
cation of these models, including speech recognition, vision, and motor control, 
require some form of temporal processing. 

The variation in a speech signal contains considerable information. Changes in 
format location or other acoustic parameters (Delattre, et al., 1955; Pols and 
Schouten, 1982) can determine the identity of constituents of speech, even when 
segmentation information is obscure. Speech recognition systems have shown 
good results when they incorporate some temporal information (Waible, et al., 
1988, Anderson, et al., 1988). Successful speech systems must incorporate tem­
poral processing. 

Natural organisms have sensory organs that are continuously updated and can do 
only limited buffering of input stimuli. Synthetic implementations can buffer their 
input, transforming time into space. Often the size and complexity of the input 
representations place limits on the amount of input that can be buffered, espe­
cially when data is coming from hundreds or thousands of sensors, and other 
methods must be found to integrate temporal information. 
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This paper describes SYREN (SYllable REcognition Network), a connectionist 
network that incorporates various temporal representations for consonant-vowel 
(CV) syllable recognition by the classification of formant center transitions. Input 
is presented sequentially, one time slice at a time. The network is described, 
including the temporal processing used in formant transition classification, learn­
ing, and syllable recognition. The results of syllable recognition experiments are 
discussed in the final section. 

TEMPORAL REPRESENTATIONS 

Various types of temporal representations may be used to incorporate time in 
connectionist models. They range from explicit spatial representations where 
time is convened into space, to implicit parametric representations where time is 
incorporated using network computational parameters. Spatiotemporal represen­
tations are a middle ground combining the two extremes. The categories repre­
sent a continuum rather than absolute distinctions. Several of these types are 
found in SYREN. 

EXPLICIT SPATIAL REPRESENTATIONS 

In a purely spatial representation temporal information is preserved by spreading 
time steps over space through the network topology. These representations in­
clude input buffers, delay lines, and recurrent networks. 

Fixed input buffers allow interaction between time slices of input. Parts of the 
network are copied to represent states at panicular time slices. Other methods 
use sliding input buffers in the form of a queue. Tapped delay lines and delay 
filters are means of spreading network node activations over time. Composed of 
chains of network nodes or delay functions, they can preserve the sequential 
structure of information. A value on a connection from a delay line represents 
events that have occurred in the past. Delay lines and filters have been used in 
speech recognition systems by Waible, et al. (1988), and Tank and Hopfield 
(1987) . 

Recurrent networks are similar to delay lines in that information is preserved by 
propagating activation through the network. They can store information indefi­
nitely or generate potentially infinite sequences of behaviors through feedback 
cycles, whereas delay lines without cycles are limited by their fixed length. Re­
current networks pose problems for learning, although researchers are working on 
recurrent back propagation networks (Jordan, 1988). 

Spatial representations are good for explicitly preserving sequences of events, and 
can simplify the learning of temporal patterns. Resource constraints place a limit 
on the size of fixed length buffers and delay lines, however. Input data from 
thousands of sensors place limits on the length of time represented in the buffer, 
and may not be able to retain information long enough to be of use. Fixed input 
buffers may introduce edge effects. Interaction is lost between the edges of the 
buffer and data from preceding and succeeding buffers unless the input is prop­
erly segmented. Long delay lines may be computationally expensive as well. 
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SPATIOTEMPORAL REPRESENTATIONS 

Implicit parametric methods represent time in connectionist models by the behav­
ior of network nodes . State information stored in individual nodes allows more 
complex activation functions and the accumulation of statistical information. 
This method may be used to regulate the flow of activation in the network, pro­
vide a trace of previous activation, and learn from data separated in time. 

Adjusting the parameters of functions such as the interactive activation equation 
of McClelland and Rumelhart (1982) can control the strength of input, affecting 
the rate that activation reaches saturation. This leads to pulse trains used in 
synchronization. Variations in decay parameters control the duration of an acti­
vation trace. 

State and statistical information is useful in learning. Eligibility traces from classi­
cal conditioning models provide decaying memory of past connection activation. 
Temporally weighted averages may be used for weight computations. 

Spatiotemporal representations combine implicit parametric representations with 
explicit spatial representations. These include the regulation of propagation time 
and pulse trains through parameter adjustment. Gating behavior that controls the 
flow of activation through a network is another spatiotemporal method. 

SYREN DESCRIPTION 

SYREN is a connectionist model that incorporates temporal processing in isolated 
syllable recognition using formant center transitions. Formant center tracts are 
presented in 5 ms time slices. Input nodes are updated once per time slice. The 
network classifies the rates and directions of formant transitions. Transition data 
are used by an adaptive network to associate transition patterns with syllables. A 
recognition network uses output of the adaptive network to identify a syllable. 
Complete details of the system maybe found in Smythe (1988). 

DATA CORPUS 

Input data consist of formant centers from five repetitions of twenty-four conso­
nant-vowel syllables (the stop consonants Ib, d, gl paired with the vowels Iii, ey, 
ih, eh, ae, ah, ou, uu/), and an averaged set of each of the five repetitions from 
work performed by Kewley Port (1982). Each repetition is presented as a binary 
matrix with a row representing frequency in 20 Hz units, and a column represent­
ing time in 5 ms slices. The matrix is given to the input units one column at a 
time. A '1' in a cell of a matrix represents a formant center at a particular 
frequency during a particular time slice. 

FORMANT TRANSITION CLASSIFICATION 

In the first stage of processing SYREN determines the rate and direction of for­
mant center transitions. Formant transition detectors are subnetworks designed 
to respond to transitions of one of six rates in either rising or falling directions, 
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and also to steady-state events. The method used is motivated by a mechanism 
for visual motion detection in the retina that combines interactions between sub­
units of a dendritic tree and shunting, veto inhibition (Koch et ai, 1982). For­
mant motion is analogous to visual motion, and formant transitions are treated as 
a one dimensional case of visual motion. 

Preferred 
Transition 

D' I Branch Nodes 
Ista Proximal 

Figure 1. Formant transition detector subnetwork and its preferred 
descending transition type. The vertical axis is frequency (one row for 
each input unit) and the horizontal axis is time in 5 ms slices. 

A detector subnetwork for a slow transition is shown in figure 1, along with its 
preferred transition. Branch nodes are analogous to dendritic subunits, and serve 
as activation transmission lines. Their activation is computed by the equation: 

af+l = af(1- 0) + netf(l - aD 
Where a is the activation of unit i at time t, net is the weighted input, t is an 
update cycle (there are 7 updates per time slice), and e is a decay constant. 
Input to a branch node drives the activation to a maximum value, the rate of 
which is determined by the strength of the input, In the absence of input the 
activation decays to O. 

For the preferred direction, input nodes are activated for two time slices (10 ms) 
in order from top to bottom. An input node causes the activation of the most 
distal branch node to rise to a maximum value. This in turn causes the next node 
to activate, slightly delayed with respect to the first, and so on for the rest of the 
branch. This results in a pulse of activation flowing along the branch with a 
transmission delay of roughly one time slice (7 update cycles) from the distal to 
the proximal end. The most proximal branch node also has a connection to the 
input node. This connection serves to prime the node for slower transitions. 
Activation from an input node that lasts for only one time slice will decay in the 
proximal branch node before the activation from the distal region arrives. If 
input is present for two time steps the extra activation from the input connection 
primes the node, quickly driving it to a maximal value when the distal activation 
arrives. 
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An S-node provides the output of the detector. It computes a sigmoid squash 
function and fires (a sudden increase in activation) when sufficient activation is in 
the proximal branch nodes. For this particular detector, if the transition is too 
fast (i. e. one time step for each input unit) the proximal nodes will not attain a 
high enough activation; if the transition is too slow (i.e. three time steps for each 
input unit) activation on proximal branch nodes from earlier time steps will have 
decayed before the transition is complete. This architecture is tuned to a slower 
transition by increasing the transmission time on the branches by varying the con­
nection weights, and by reducing the decay rate by lowering the decay constant. 
This illustrates the use of parametric manipulations to control temporal behavior 
in for rate sensitivity. 

Veto inhibition is used in this detector for direction selectivity. Veto nodes pro­
vide inhibition and are activated by input nodes, and use the interactive activation 
equation for a decaying memory. Had the transition in figure 1. been in the 
opposite direction, activation from previous time slices on a veto connection 
would prevent the input node from activating its distal branch node, preventing 
the flow of activation and the firing of the S-node. Here a veto connection acts 
as a gate, serving to select input for processing. 

Detectors are constructed for faster transitions by shortening the transmission 
lines and by using veto connections for rate sensitivity. A transition detector for a 
faster transition is shown in figure 2. Here the receptive field is larger, and veto 
connections are used to select transitions that skip one input unit at each time 
slice. Veto connections are still used for direction selectivity. Detectors for even 
faster transitions are created by widening the receptive field and increasing the 
number of veto connections for rate sensitivity. 

Detectors are designed to respond to a specific transition type and not to respond 
to the transitions of other detectors. They will respond to transitions with rates 
between their own and the next type of detector. For slower transitions the firing 
of two detectors indicates an intermediate rate. For faster transitions special 
detectors are designed to fire for only one precise rate by eliminating some of the 
branches. Different firing patterns of precise and more general detectors distin­
guish rates. This gives a very fine rate sensitivity throughout the range of transi­
tions. 

Detector networks are copied to span the entire frequency range with overlapping 
receptive fields. This yields an array of S-nodes for each transition type. giving 
excellent spatial resolution of the frequency range. There are 200 S-nodes for 
each detector type. each signaling a transition that starts and ends at a particular 
frequency unit. 

ADAPTIVE NE1WORK 

The adaptive network learns to associate patterns of formant transitions with spe­
cific syllables. To do this it must be able to store at least part of the unfolding 
patterns or else it is forced to respond to information from only one time slice. 
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Veto 
Nodes 

Branch Nodes 

Figure 2. Formant transition detector subnetwork for a faster transi­
tion. Only the veto connections used for rate sensitivity are shown. 

The learning algorithm must also deal with past activation histories of connections 
or else it can only learn from one time slice. The network accomplishes this 
through tapped delay lines and decaying eligibility traces. 

There are twenty-four nodes in the adaptive network, each assigned to one sylla­
ble. It is a single layer network, trained using a hybrid supervised learning algo­
rithm that merges Widrow-Hoff type learning with a classical conditioning model 
(Sutton and Barto, 1987). 

Storage of temporal patterns 

Tapped delay lines are used to briefly store sequences of formant transition pat­
terns. S-nodes from each transition detector are connected to a tapped delay 
line of five nodes. Each delay node simply passes on its S-node's activation value 
once per 5 ms time slice, allowing the delay matrix to store 25 ms (five time 
slices) of transition patterns. 

The delay matrix consists of delay lines for each transition detector at each recep­
tive field. Adaptive nodes are connected to every node in the delay matrix. The 
delay lines do not perform input buffering; information in the delay matrix has 
been subject to one level of processing. The amount of information stored (the 
length of the delay line) is limited by efficiency considerations. 

Adaptive Algorithm 

Nodes in the adaptive network compute their activation using a sigmoid squash 
function and adjust their weights according to the equation: 

W~"!"l = w~· + a(z~ - s~)e~ IJ IJ I I J 

where w is the weight from a connection from node j to node i at time t. a is a 
learning constant. z is the expected value of node i, s is the weighted sum of the 
connections of node i. and e is the exponentially decaying canonical eligibility of 
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connection j. The eligibility constant gives some variation in the exact timing of 
transition patterns, allowing limited time warping between training and testing. 

FINAL RECOGNITION NETWORK 

The adaptive network is not perfect and results in a number of false alarm errors. 
Many of these are eliminated by using firing patterns of other adaptive nodes. 
For example, a node that consistently misfires on one syllable could be blocked 
by the firing of the correct node for that syllable. Adaptive nodes are connected 
to a veto recognition network. Since an adaptive node may fire at any time (and 
at different times) throughout input presentation, delay lines are used to preserve 
patterns of adaptive node behavior, and veto inhibition is used to block false 
alarms. Connections in the veto network are enabled or disabled after training. 
Clearly this is an ad hoc solution, but it suggests the use of representations that 
are distributed both spatially and temporally. 

RESULTS AND DISCUSSION 

In each experiment syllable repetitions were divided into mutually exclusive train­
ing and testing sets. A training cycle consisted of one presentation of each mem­
ber of the training set. In both experiments the networks were trained until 
adequate performance was achieved, usually after four to ten training cycles. 

In the first experiment the network was trained on the five raw repetitions and 
tested on the averaged set. It achieved 92% recognition on the testing set and 
100% recognition on the training set. The network had two miss errors on the 
training set. 

In the second experiment, the network was trained on four of the raw repetitions 
and tested on the fifth. Five separate training runs were performed to test the 
network on each repetition. The network achieved 76% recognition on the test­
ing set for all training runs, and 100% recognition on the training set. 

In all experiments most of the adaptive nodes responded when there was transi­
tion information in the delay matrix. Many responded when both transition and 
steady-state information was present, using clues from both the consonant and 
the vowel. This situation occurs only briefly for each formant, since the delay 
matrix holds information for 5 time slices, and it takes four time slices to signal a 
steady-state event. Transition information will be at the end of the delay matrix 
while steady-state is at the beginning. Many nodes were strongly inhibited in the 
absence of transition information even for their correct syllable, although they 
had fired earlier in the data presentation. 

CONCLUSIONS 

We have shown how different temporal representations and processing methods 
are used in a connectionist model for syllable recognition. Hybrid connectionist 
architectures with only slightly more elaborate processing methods can classify 
acoustic motion and associate sequences of transition events with syllables. The 
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system is not designed as a general speech recognition system, especially since the 
accurate measurement of formant center frequencies is impractical. Other signal 
processing techniques, such as spectral peak estimation, can be used without 
changes in the architecture. This could provide information to a larger speech 
recognition system . 

SYREN was influenced by a neurophysiological model for visual motion detec­
tion, and shows how knowledge from one processing modality is applied to other 
problems. The merging of ideas from real nervous systems with existing tech­
niques can add to the connectionist tool kit, resulting in more powerful processing 
systems. 
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