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Abstract 

A new training paradigm, caned the "eomparison pa.radigm," is introduced 
for tasks in which a. network must learn to choose a prdcrred pattern from a 
set of n alternatives, based on examplcs of Imma.n expert prderences. In this 
pa.radigm, the inpu t to the network consists of t.wo uf the n alterna tives, and 
the trained output is the expert's judgement of which pa.ttern is better. This 
para.digm is applied to the lea,rning of hackgammon, a difficult board ga.me in 
wllieh the expert selects a move from a. set, of legal mm·es. \Vith compa.rison 
training, much higher levels of performance can hc a.chiew~d, with networks 
that are much smaller, and with coding sehemes t.hat are much simpler and 
easier to understand. Furthermorf', it is possible to set up the network so 
tha.t it always produces consisten t rank-orderings . 

1. Introduction 

There is now widespread interest, in tlH~ use of conncctillnist networks fllr real­
world practical problem solving. The principal areas of applica.tion which 
have been studied so far involvc rela tiv('ly low-level signal processing and 
pattern recognition t.asks. However, eOllllectionist networks might also he 
useful in higher-level tasks whkh a.re curr('nt.l~· tackled hy cxprrt systems 
a.nd knowledge engineering approadl(,s [2]. In this pa per, 'vc considcr problem 
domains in which tlte expert is givcn a s('t of 71. alt.enulti,·es as input (71. may be 
either sma.II or large), and mnst select. t.}l<' m()st dC'sirtlhl(' ()T most prderable 
alternative. This type of task occurs rep('atccUy throughout the domains 
of politics, business, eeonomics, mcdicine, a.nd many ot hers. \Vhcthcr it is 
choosing a fureign-policy option, a. w('apons cont,rador, a course of trea.tment 
for a disease, or simply what to have for dinner, prohlems requiring choice 
are constan tly being faced and 801\'(\(1 by 111lma.n experts. 

How might a. learning system snch as a. cOlllH,ctionist network be set up to 
learn to ma.ke such choices from human expert cxampI~s? The immediately 
obvious a,pproa,ch is to train the network to produce a numerical output 
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"score" for ea,ch input alterna.tive. To make a, choice, then, une would have 
the network score each a.lterna,tive, and select t.he alterna tive with the high­
est score. Since the lea,rning system learns from examples, it. seems logical to 
train the network on a da.ta base of examples in which a, human expert has 
entered a numerical score for ea,ch possible choice. Howc\'cr, there are two 
major problems with such a,n a,pproa,ch. First, in many domains in which n 
is large, it would be tremendously time-consuming for the expert to create 
a, data base in which each individual a.lternative has been painstaking evalu­
a,ted, even the vast number of obviously ba,d alterna.tives which are not even 
worth considering. (It is importa.nt for the network t,o sec examples of ba,d 
alternatives, otherwise it would tend t.o produce high scores for everything.) 
l\1:ore importa.ntly, in ma,ny domains human experts do not think in terms of 
absolute scoring functions, and it would thus be extremely difficult to create 
training data containing a,hsolute scores, because such scoring is alien to the 
expert's wa,y of thinking a,hout the problem. Inst.cad, the most natural way 
to make training data is simply tu record the expcrt in adinn, i.e., for ea,eh 
problem situation, record each of the tlltcrna,th'cs hc htld t.o choose from, a,nd 
record which one he actually selected. . 

For these reasons, we advoca.te teaching the network to compare pairs of 
alterna.tives, rather than scoring individual aIterna.tivcs. In ot.her words, the 
input should be two of the set of n alternatives, and thc output should be a 
1 or 0 depending on which of the two alterna.tives is hetter. From a set of 
recorded huma,n expert preferences, one can then teach thc network that the 
expert's choice is better than all other a.ltcrna tivcs. 

One potential concern raised by this approach is tha t, in performance mode 
a,fter the network is trained, it might he neccssary t.o mtlke n2 comparisons to 
select the best alterna.tive, whereas only n individual scor('s tlrc needed in the 
other approa,ch. However, the network can select the hcst alterna.tive with 
only n compa.risons by going through the list of altern a tives in ordcr, a.nd 
compa,ring the current alternative wHh thc b('st ait.erntltive secn so fa.r. If 
the current alterna.tive is better, it becomcs the ncw 1>('st altcrnative, and if 
it is worse, it is rejected. Anot.hcr poten tial COIlcern is tha t tI. network which 
only knows how t.o compare might not produce a consist('nt rank-ordering, 
i.e., it might sa.y that alternativc a is better t.han h, b is hdtN t.han c, and 
c is better than a, and then one do('s not know which alt('rnative to select. 
However, we shall see la.ter that it is possiblc to gllartlutc'c (,(lllsist('ncy with a 
constrained a.rchitecture which forccs t.he network to c:()mc~ IIp wit.h absolute 
numerical scores for individual alterna tives. 

In the following, we shall exa.minc the applic~tI . ti()n of t.he comparison train­
ing pa.radigm to the ga.me of backgammon, as considC'ra hIe cxperience ha.s 
already been obtained in this domain. In previous papC'rs [7,6]' a network 
was described which lea.rned to pla.y ba,ckgammon from an expert data, base, 
using the so-called "back-proptl,ga.tion" learning rule [5J. In that system, the 
network was trained to score individual moyes. In other words, the input 
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consists of a move (drfined by the initi::ll position bdnre the move a.nd the 
final position after the move), and the desired output is a. real number indi­
ca.ting the strength of the move. Henceforth we shall refer to this training 
paradigm as the "rcla.t.ive score" par::ldigm. 'Vhilc this approach produced 
considerable success, it had a. number of serious limitations. \Ve sha.ll see 
that the compa.rison paradigm solyes one of the most important limita.tions 
of t.he previous a.pproach, with the rrsult tha t the overall performance of 
Ute network is much bet ter, the llum her of connedions required is greatly 
reduced, a.nd. the network's input coding scheme is much simpler and easier 
to understa.nd. 

2. Previous backgammon networks 

In [7], a network was descrihed which learnrd tl) pla~· fairly good ba.ckga.m­
mon by ba.ck-propa.gation learning of a. large expert t.raining set, using the 
rcla,tive score paradigm describc(l pr(,yiollsly. After tr::lining, the network 
was tested both by measuring its prrformance on ::I t('st sct. of positions not 
used in training, and hy a,ctual game pl::l)' against hunums ::Ind cOllventional 
computer programs. The best net.work was ablr to drfeat. Sun :Microsys­
terns' Gammontool, Ute best available commercial program, hy a sllbsta.ntial 
ma.rgin, but it was still fa.r from human expert-level performance. 

The basic conclusion of [7] was that it was possihle to achieve decent levels 
of performance by this network learning procedure, but it, was not a.n ea.sy 
matter, and required suhst.antial hum::ln intervention. The choice of a. coding 
scheme for the inpnt informa.t.ion, for rxamplr, was fonn(l to be an extremely 
important issue. The hest coding SclH'IrleS contained a. great deal of doma.in­
specific information. The best, encoding of the "raw" board iuforma.tion was 
in terms of concepts that 111lman exprrts use to describe loc::II tra.llsitions, such 
as "slotting," "stripping," et.c.. Also, a few "pre-colllputrd features" were 
required in addition t.o the raw board inform::lt.ion. Thus it ,,·as necessary 
to be a domain expert in order to clpsign a suit,a hIe ndwork I.oding sdteme, 
a.nd it seemed tha.t the only way t.o discov('r thr hrst cOlling scheme was 
by painstaking trial and error. This "'::IS som('\dtat. disappoiut,ing, as it was 
hoped tha.t the net\vork lea rIling l)foc('(illre \y()ul<l alit lima t ically produl.e an 
expert ba.ckgammon net.work with little or no human ('ffort. 

3. Comparison paradigul network set-up 

111 the sta.nd.ard pra.ctice of ha.c:k-propag::lt.inn, a compfHisoIt paradigm net­
work would ha.ve a.n input layer, (lIlC ()r morr layrTs of hidden nnits, and a.n 
output layer, wit.h full connectivity hdwcrn adjacell t l::lyers. The input. layer 
would represent, two final board posit.ions a and '" and the out.put layer would 
ha.ve just a single unit t.o represent which board position was better. The 
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teacher signal for the output unit would be a, 1 if hoard position (l was better 
than b, a,nd a 0 if b was better tha.n a. 

The proposed compa,rison pa.ra.digm network "'ould m;ercome the limita,t.ion 
of only being able to consider individual moves in isolation, without knO\vl­
edge of what other a.lt.erna,tives arc available. In addit.ion, t.he sophisticated 
coding scheme that was developed to encode transition informa tion would not 
be needed, since compa,risons could be based solely on the final board sta.tes. 
The comparison approa.ch offers grca ter sensitivity in dist.inguishing between 
close alternatives, a,nd as stated prc"iously, it corrcsp onds more closely to 
the actual form of human expert knowledge. 

These advantages a,re formida,ble, hut. t.here are some import.ant. problems 
with the a.pproach as curren t.ly descrihed. One technical prohlem is tlta,t the 
learning is significantly slower. This is beca,use 271, comparisons per t.ra.ining 
position a,re prcsen ted to the network, where 11. '" 20, wh('rC'tls in tllC relative 
score approach, only about 3-4 moves per position would he presented. It 
was therefore necessary to develop a, number of technical tricks to increase 
the speed of the simulator code for t.hi.s specific a.pplica tion (to he described 
in a future publication). 

A more fundamental problem with the a.pproa("h, however, is the issue of con­
sistency of network comparisons . Two properties arc required for complete 
consistency: (1) The comparison between any two positions mllst be unam­
biguous, i.e., if the network says that. a is bett('r t.han b when a is presented 
on the left a,nd b on the right, it !tact hetter say that. a is hetter than b if 
a is on the right and b is on the left. One ca.n show tha t t.his requircs t.he 
network's output to exaetly invert whenever Ule input. hO(lrd positions are 
swapped. (2) The compa,risons must he transitire, as alluded to previously, 
i.e., if a is judged better than h, and 1J is judged better than (', the network 
lta,d better judge a to be better than c. 

Sta.ndard unconstrained networks hayc no gUll ra n tee flf sa t.isfying eit.her of 
these properties. After some thought, howe\"('I, one realizc's that the output 
inversion symmetry can be enforcC'd by a symmetry rc'ltl tion amongst the 
weight.s in the network, and that the transiti"ity ancl rank-OHler consist.ency 
can be guaranteed by separability in the ardtitC'dure, as illllstratC'd in Figurc 
1. Here we see tlla,t t.his network really consists of t.wo half-networks, one of 
which is only conceIllcd with t}w evaluat.ion "fhoard positi.on (I, and the ot.her 
of which is concerned only wit.h t.h~ C',"alua t.iol\ of hOH.T() posit.inn b. (Duc to 
the indicated symmetry relation, nne neC'ds only store oue half-network in the 
simulator code.) Each half-network mrly have on(' or morc' lay('rs of hidden 
units, but as long as they a,re not cross-coupled, t.he C'valuat.ion of each of 
the two input boa,rd positions is hoilC'd down to a single rC'al number. Since 
real numbers always ra,nk-order consist.en tly, t.he ll('t\,'ork's compa,risons a,re 
al ways com;is ten t. 
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final position (a) final position (b) 

Figure 1: A network design for cOlTlpari~()n trailling wit h gnarallteed consis­

tency of comparisons. \Veight groHps han~ ~YlTlmet.ry rc1ati()ns W 1 = W 2 
and W 3 == - W 4, which ensures I hat the outPllt cxact.Jy in\Trts upon swap­
ping positions in the input arraJ'. Separation or the hidden unils cOllrlenses 
the evaluation of each final hoard position into a single real IIIIJTlhcr, thus 
ensuring transitivity. 

An importa.nt a.dded benefit of t.his scheme is that an a.hsoillte hoard eval­
ua.tion fundion is obtained in each half-network. This means t.hat the net­
wurk, to the extcnt that it.s cvaluation fllnct.ioll is ac-cnrat.e, has an intrinsic 
understanding of a. given posit.ion, as opposed to HH'rely heing a hIe to de­
tect features which correspond t.o good moves. As has heen emphasil':cd by 
Berliner [1], an intrinsic uudr.rst.a.llding of the position is crucial for play at 
the highest levels, a.n<l for use of t,he dOllhling cnl)('. Thnf-:, this a.pproach 
can serve as the ba.sis for fut.ure progress, whNeas thr previous approach of 
scoring moves was doomed eventually to run into a cirad rud. 

4. Results of comparison training 

The training procedure for the comparison paradigm nC't.work was as follows: 
Networks ""'ere set up with 289 input. units which enc(l(le a (ic'scription of sin­
gle final boa.rd position, varying nnmlH'rs (If hidden units, and a single output 
unit. The training data was taken from a set (If 40n gamrs ill which the au­
thor played both sides. This <ia ta sd con hlins a recording of t.he a.n t,hor's 
preferred move for each position, and no ot.her comments. The engaged posi­
tions in the da.ta set weIe selected out, (discngflged ra.cing I)()sit.ions were not 
studied) and divided int.o five cat<'gories: hearoff, bearin, opponent bearoff, 
opponent b~a.rin, a.nd a default ca t.egnry ('overing eVPlything else. In each 
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Type of n.SP net, CP net 
_t~e_st_s~e~t _____ (~6_5_1-_1_2-_1~)~(_289-1)_ 

bcaroff .82 .83 
hearin .54 .60 
opp. bea.roff· .56 .54 
opp. bearin .60 .66 
other .58 .65 

Table 1: Performance of neLs of indicated size on respedin~ test. sets, as mea­
sllred by fraction of positions for which TIel agrees wit h lmTllrlll expert choice 
of best move. HSP: relative score paradigm, CP: comparison paradigm. 

category, 200 positions chosen (I.t. r(1UdOIU were set. (lside to he us('d as test­
ing <lat(l.; tIte remaining da ta. (a bon t. 1000 positions in ('(I eh category except 
t.he dcfa.lllt category, for which a.bout 4000 positions were used) was used to 
tra.iu networks which spedalil':ed in each category. The learning algorithm 
llsed was st.a.nd(l.rd back-propagation with IIWInelltllIn a.nd without weight 
decay. 

Performa,nce after tr(lining is summaril':ed in Ta.hl('s 1 and 2. Ta.hle 1 gives 
the performance of each specialist network on the appropriate set of test 
positions. Results for the comparison par(ldigm nebYllrk are shown for net­
works without hidden units, because it was fouud that the (lddition of hidden 
units did not improve the performance. (This is discussed in the following 
section.) \Ve contra.st. these results with result.s of tr(lining networks in the 
rela.tive score pa,radigm on the same tr(lilling da.t(l sds. "~e see in Ta hIe 1 
tha.t for the bearoff and oppon('nt. hearofi' speeialists, there is only a small 
cha.nge in perform(lnce under t.he contpa.rison p(lradigm. Fllr the hea.rin and 
opponcnt. bcarin specialists, t,herr is an improv('ment. in IH'rformance of a.bout 
6 percenta.ge poin ts in each casco For t.his pa.rtkular applica tion, this is a. "ery 
substantial improvement in perfoIIuance. How('y<'I, th(~ most, import(lnt find­
ing is for the default ca tegory, which is much l(lrgcr and mor(' difficult than 
any of the specialist ea.t.egories. Th(' d('f(lult network's prrformance is the 
key factor in determining the syst('m's IIvrr(lll g(lme prrfOrIll(lllCe. 'Vit.h cum­
pa.rison t.rainillg, we find an improvc'Ineur. in perform(lll('e from 58% t.o 65%. 
Given the sil':e and diffkllIt.y of t,his ca t('gory, t his ('(Ill onl)- he desnibcd as a. 
huge improvement, in performance, and is all t.h(' mllre rem ark(l hIe when nne 
considers th(lt. t,he comp(lrison p(I.radigm net has only 30() w('ights, (IS opposed 
to 8000 weight,s for the relative score paradigm net. 

Next, a combined game-playing s)-stC'ln was s('t. up llsing t.hr the specialist. 
nets for all engaged posit.ions. (The G(llTlmontool evaluat.ion function was 
called for ra.cing posit.ions.) Results are given in T(lble 2. Ag(linst, Gammon­
tool itself, the pcrforma.nce und('r thr comparison p(lr(l(ligm improves from 
59% to 64%. Against the a.uthor (and tcachE'r), the pC'rforma.nce improves 
from a.n estimat,ed 35% (since the nsp net.s (Ire so hig and slow, a.ccnra,te 
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RSP nets 
.59 (500 games) 
.35 (l00 ga,mes) 

CP nets 
.64 (2000 games) 
.42 (400 games) 

Table 2: Game-playing performance of composite network systems against 
Gammontool and against the author, as measured by fractioTl of games won, 
without counting gammons or backgammons. 

statistics could not be obtained) to about 42%. 

Qualitatively, one notices a subst.a,ntial overall improvement in the new net­
work's level of pla,y. But what, is most, striking is the nct.work's In)lst case be­
ha,vior. The previous relative-score network ha.d particularly bad worst-case 
beha,vior: about once every other ga,me, the network would make an atro­
cious blunder wltich would seriously jeopardize its dlances of winning that 
ga,me [6]. An alarming fradion of these blunders ,,,,ere seemingly random and 
could not be logically explained. The new comparison para,digm network's 
wOIst-ca.se behavior is vastly improvcd in this rega,rd. The frcquency and 
severity of its mistakes are significantly reducE!d, hut more imp(lrtantly, its 
mista,kes a.re understandable. (Some of the improvement in this respect may 
be dne to the elimination of the noisy teacher signal descrihed in [7].) 

5. Conclusions 

\Ve have seen that, in the domain of backgammon, the int.roduct.ion of the 
comparison training pa.ra,digm has result.ed in networks whkh perform much 
better, with vastly reduced numbers Ilfweights, a.ud with input. coding schemes 
tha.t a.re much simpler and easier t.o understand. It was surprising that snch 
high performa.nce could be obtained in "perceptrou" networks, i.E!., networks 
withou t hidden units. This reminds us t.hat. one should not. summarily dis­
miss perceptrons as uninteresting or unworthy of study hecause they arc only 
ca.pable of lea.rning linearly separable funct.ions [3]. A su hst.an tial component 
of many difficult real-world problems may lie in the liu('arly separable spec­
trum, and thus it makes sense to try perceptIons at least as a first attempt. 
It was also surprising tha.t the use (If hidden units in the comparison- trained 
networks does not improvc the pcrformanc('. This is nn('xplained, a.nd is t.he 
subject of current resea.rch. It is, however, not without precedent: in at least 
one other real-world application [4], it has heen found tha.t networks with 
hidden units do not pcrform any bettE'r than netwllrks without hidden units. 

?vIore generally, one might conclude t.ha.t, in training a. neural network (or 
indeed a.ny learning system) from human expert. E'xamples in a cumplex do­
main, there should he a. good match hetween Ute na t,ural form of the expert's 
knowledge and the method by which the net.work is trained. For domains in 
which the expert must seh~ct a preferred alt.crnative from a set of alternatives, 
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the expert naturally thinks in terms of comparisons a.mongst the top few a.l­
terna.tives, and the compa.rison paradigm proposed here takes advantage of 
that fact. It would be possihle in principle to train a network using absolute 
evaluations, hut the crea.tion of sueh a. training set might he too difficult to 
underta.ke on a large scale. 

If the above discussion is coned, then the comparisou pa.ra.digm should be 
useful in ot,her applications involving expert choice, and in other lea.rning 
syst,ems besides connectionist networks. Typically expert systems a.re hand­
crafted by knowledge engineers, ra.ther than learned from human expert ex­
amples; however, there has recently been some interest in sl1pervis(~d lea.rning 
approa.ches. It will be interesting to see if the compa.rison paradigm proves to 
be useful when supervised lea.rning procedures are applied t,o otller domains 
involving expert choice. In using the compa.rison paradigm, it. will be impor­
tant to ha.ve some way to gua.ra.nt,ee that the syst,em's comparisons will be 
unambiguous and t,ra.nsitive. For feed-forward networks, it was shown in this 
pa.per how to gua.rantee this using symmetric, separa.t.ed nrtworks; it should 
be possible to impose similar constraints Oil otll<'r learning systems to enforce 
consistency. 
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