Connectionist Learning of Expert Preferences by
Comparison Training

Gerald Tesauro
IBM Thomas J. Watson Rescarch Center
PO Box 704, Yorktown Heights, NY 10598 USA

Abstract

A new training paradigm, called the “comparison paradigm,” is introduced
for tasks in which a network must learn to choose a preferred pattern from a
set of » alternatives, based on examples of human expert preferences. In this
paradigm, the input to the network consists of two of the n alternatives, and
the trained output is the expert’s judgement of which pattern is better. This
paradigm is applied to the learning of backgammon, a difficult board game in
which the expert selects a move from a set of legal moves. With comparison
training, much higher levels of performance can be achieved, with networks
that are much smaller, and with coding schemes that are much simpler and
easier to understand. Furthermore, it is possible to set up the network so
that it always produces consistent rank-orderings.

1. Introduction

There is now widespread interest in the use of connectionist networks for real-
world practical problem solving. The principal arcas of application which
have been studied so far involve relatively low-level signal processing and
pattern recognition tasks. However, connectionist networks might also be
useful in higher-level tasks which are currently tackled by expert systems
and knowledge engineering approaches [2]. In this paper, we consider problem
domains in which the expert is given a set of # alternatives as input (7 may be
cither small or large), and must select the most desirable or most preferable
alternative. This type of task occurs repeatedly throughout the domains
of politics, business, economics, medicine, and many others. Whether it is
choosing a foreign-policy option, a weapons contractor, a course of treatment
for a disease, or simply what to have for dinner, problems requiring choice
are constantly being faced and solved by human experts.

How might a learning system such as a connectionist network be set up to
learn to make such choices from human expert examples? The immediately
obvious approach is to train the network to produce a numerical output

99



100

Tesauro

“score” for each input alternative. To make a choice, then, one would have
the network score each alternative, and select the alternative with the high-
est score. Since the learning system learns from examples, it seems logical to
train the network on a data base of examples in which a human expert has
entered a numerical score for each possible choice. However, there are two
major problems with such an approach. First, in many domains in which »
is large, it would be tremendously time-consuming for the expert to create
a data base in which each individual alternative has becn painstaking evalu-
ated, even the vast number of obviously bad alternatives which are not even
worth considering. (It is important for the network to see examples of bad
alternatives, otherwise it would tend to produce high scores for everything.)
More importantly, in many domains human experts do not think in terms of
absolute scoring functions, and it would thus be extremely difficnlt to create
training data containing absolute scores, because such scoring is alien to the
expert’s way of thinking about the problem. Instead, the most natural way
to make training data is simply to record the expert in action, i.e., for each
problem situation, record each of the alternatives he had to choose from, and
record which one he actually selected.

For these reasons, we advocate teaching the network to compare pairs of
alternatives, rather than scoring individual alternatives. In other words, the
input should be two of the set of n alternatives, and the output should be a
1 or O depending on which of the two alternatives is hetter. From a set of
recorded human expert preferences, one can then teach the network that the
expert’s choice is better than all other alternatives.

One potential concern raised by this approach is that, in performance mode
after the network is trained, it might be necessary to make n? comparisons to
select the best alternative, whercas only n individual scores are nceded in the
other approach. However, the network can select the best alternative with
only » comparisons by going through the list of alternatives in order, and
comparing the current alternative with the best alternative scen so far. If
the current alternative is better, it becomes the new best alternative, and if
it is worse, it is rejected. Another potential concern is that a network which
only knows how to compare might not produce a consistent rank-ordering,
i.e., it might say that alternative a is better than b, b is hetter than ¢, and
c is better than e, and then one does not know which alternative to select.
However, we shall see later that it is possible to guarantee consistency with a
constrained architecture which forces the network to come up with absolute
numerical scores for individual alternatives.

In the following, we shall examine the application of the comparison train-
ing paradigm to the game of backgammon, as considerable experience has
already been obtained in this domain. In previous papers [7,6], a network
was described which learned to play backgammon from an expert data base,
using the so-called “back-propagation” learning rule [5]. In that system, the
network was trained to score individual moves. In other words, the input



Connectionist Learning of Expert Preferences

consists of a move (defined by the initial position before the move and the
final position after the move), and the desired output is a real number indi-
cating the strength of the move. Henceforth we shall refer to this training
paradigm as the “relative score” paradigm. While this approach produced
considerable success, it had a number of serious limitations. We shall see
that the comparison paradigm solves onc of the most important limitations
of the previous approach, with the result that the overall performance of
the network is much better, the number of connections required is greatly
reduced, and the network’s input coding scheme is much simpler and easier
to understand.

2. Previous backgammon networks

In [7], a network was described which learned to play fairly good backgam-
mon by back-propagation learning of a large expert training sct, using the
relative score paradigm described previously. After training, the network
was tested both by measuring its performance on a test set of positions not
used in training, and by actual game play against humans and conventional
computer programs. The best network was able to defeat Sun Microsys-
tems’ Gammontool, the best available commercial program, by a substantial
margin, but it was still far from human expert-level performance.

The basic conclusion of [7] was that it was possible to achieve decent levels
of performance by this network learning procedure, but it was not an easy
matter, and required substantial human intervention. The choice of a coding
scheme for the input information, for example, was found to be an extremely
important issue. The best coding schemes contained a great deal of domain-
specific information. The best encoding of the “raw” board information was
in terms of concepts that human experts use to describe local transitions, such
as “slotting,” “stripping,” etc.. Also, a few “pre-computed features” were
required in addition to the raw board information. Thus it was necessary
to be a domain expert in order to design a suitable network coding scheme,
and it seemed that the only way to discover the best coding scheme was
by painstaking trial and error. This was somewhat disappointing, as it was
hoped that the network learning procedure would automatically produce an
expert backgammon network with little or no human effort.

3. Comparison paradigm network set-up

In the standard practice of back-propagation, a comparison paradigm net-
work wonld have an input layer, one or more layers of hidden units, and an
output layer, with full connectivity between adjacent layers. The input layer
would represent two final board positions a and 5, and the output layer would
have just a single unit to represent which board position was better. The

101



102

Tesauro

teacher signal for the output unit would be a 1 if board position a was better
than b, and a O if b was better than a.

The proposed comparison paradigm nctwork would overcome the limitation
of only being able to consider individual moves in isolation, withount knowl-
edge of what other alternatives are available. In addition, the sophisticated
coding scheme that was developed to encode transition information would not
be needed, since comparisons could be based solely on the final board states.
The comparison approach offers greater sensitivity in distinguishing between
close alternatives, and as stated previously, it corresponds more closely to
the actual form of human expert knowledge.

These advantages are formidable, but there are some important problems
with the approach as currently described. One technical problem is that the
learning is significantly slower. This is becanse 2n comparisons per training
position are presented to the network, where m ~ 20, whereas in the relative
score approach, only about 3-4 moves per position would be presented. It
was therefore necessary to develop a number of technical tricks to increase
the speed of the simulator code for this specific application (to be described
in a future publication).

A more fundamental problem with the approach, however, is the issne of con-
sistency of network comparisons. Two properties are required for complete
comnsistency: (1) The comparison between any two positions must be unam-
biguous, i.e., if the network says that a is better than b when a is presented
on the left and b on the right, it had better say that a is better than b if
a is on the right and b is on the left. One can show that this requires the
network’s output to exactly invert whenever the input bhoard positions are
swapped. (2) The comparisons must be transitive, as alluded to previously,
i.e., if a is judged better than b, and b is judged better than e, the network
had better judge a to be better than c.

Standard unconstraired networks have no guarantee of satisfying ecither of
these properties. After some thought, however, one realizes that the output
inversion symmetry can be enforced by a symmetry relation amongst the
weights in the network, and that the transitivity and rank-order counsistency
can be guaranteed by separability in the architecture, as illustrated in Figure
1. Here we sce that this network really consists of two half-networks, one of
which is only concerned with the evaluation of board position a, and the other
of which is concerned only with the evaluation of board position b. (Due to
the indicated symmetry relation, one needs only store one half-network in the
simulator code.) Each half-network may have one or more layers of hidden
units, but as long as they are not cross-coupled, the evalunation of each of
the two input board positions is boiled down to a single real number. Since
real numbers always rank-order consistently, the network’s comparisons are
always comnsistent.



Connectionist Learning of Expert Preferences

I
I
I
|
I
!
I
|
|
1
I
I
I
1
!
1
I
|
I
|
I
I
I

final position (a) final position (b)

[Yigure 1: A network design for comparison training with guarantecd consis-
tency of comparisons. Weight groups have symmelry relations W1 = Wy
and Wg = —W,, which ensures that the output exactly inverts upon swap-
ping positions in the input array. Separation of the hidden units condenses
the evaluation of cach final board position into a single real number, thus

ensuring transitivity.

An important added benefit of this scheme is that an absolute board eval-
uation function is obtained in each half-network. This means that the net-
work, to the extent that its evaluation function is accurate, has an intrinsic
understanding of a given position, as opposed to merely heing able to de-
tect features which correspond to good moves. As has heen emphasized by
Berliner [1], an intrinsic understanding of the position is crucial for play at
the highest levels, and for use of the donbling cube. Thns, this approach
can serve as the basis for future progress, whereas the previous approach of
scoring moves was doomed eventually to run into a dead end.

4. Results of comparison training

The training procedure for the comparison paradigm network was as follows:
Networks were set up with 289 input units which encode a description of sin-
gle final board position, varying numbers of hidden units, and a single ontput
unit. The training data was taken from a sct of 400 games in which the au-
thor played both sides. This data sct contains a recording of the anthor’s
preferred move for each position, and no other comments. The engaged posi-
tions in the data set were selected out (disengaged racing positions were not
studied) and divided into five categories: bearoff, bearin, opponent bearoff,
opponent bearin, and a default category covering everything eclse. In each

103



104

Tesauro

Type of RSP net CP net
test set (651-12-1) (289-1)
bearoff .82 .83
bearin 54 .60
opp. bearoff .56 .54
opp. bearin .60 .66
other 58 .65

Table 1: Performance of nets of indicated size on respective Lest scts, as mea-
sured by [raction of positions for which net agrees with human expert choice
of best move. RSP: relative score paradigm, CI: comparison paradigm.

category, 200 positions chosen at random were set aside to be used as test-
ing data; the remaining data (about 1000 positions in each category except
the default category, for which about 4000 positions were used) was used to
train networks which specialized in each category. The learning algorithm
used was standard back-propagation with momentum and without weight
decay.

Performance after training is summarized in Tables 1 and 2. Table 1 gives
the performance of each specialist network on the appropriate sct of test
positions. Results for the comparison paradigm network are shown for net-
works without hidden units, because it was found that the addition of hidden
units did not improve the performance. (This is discussed in the following
section.) We contrast these results with results of training networks in the
relative score paradigm on the same training data scts. We see in Table 1
that for the bearoff and opponent bearoff specialists, there is only a small
change in performance under the comparison paradigm. For the bearin and
opponent bearin specialists, there is an improvement in performance of about
6 percentage points in each case. For this particular application, this is a very
substantial improvement in performance. However, the most important find-
ing is for the default category, which is much larger and more difficult than
any of the specialist categories. The defaunlt network’s performance is the
key factor in determining the system’s overall game performance. With com-
parison training, we find an improvement in performance from 58% to 65%.
Given the size and difficulty of this category, this can only be described as a
huge improvement in performance, and is all the more remarkable when one
considers that the comparison paradigm net has only 300 weights, as opposed
to 8000 weights for the relative score paradigm net.

Next, a combined game-playing system was sct up using the five specialist
nets for all engaged positions. (The Gammontool evaluation function was
called for racing positions.) Results are given in Table 2. Against Gammon-
tool itself, the performance under the comparison paradigm improves from
59% to 64%. Against the anthor (and teacher), the performance improves
from an estimated 35% (since the RSP nets are so big and slow, accurate



Connectionist Learning of Expert Preferences

Opponent RSP nets CP nets
Gammontool .59 (500 games) .64 (2000 games)
Tesauro .35 (100 games) .42 (400 games)

Table 2: Game-playing performance of composite network systems against
Gammontool and against the author, as measured by fraction of games won,
without counting gammons or backgammions.

statistics could not be obtained) to about 42%.

Qualitatively, one notices a substantial overall improvement in the new net-
work’s level of play. But what is most striking is the network’s worst case be-
havior. The previous relative-score network had particularly bad worst-case
behavior: about once every other game, the network would make an atro-
cious blunder which would seriously jeopardize its chances of winning that
game [6]. An alarming fraction of these blunders were seemingly random and
could not be logically explained. The new comparison paradigm network’s
worst-case behavior is vastly improved in this regard. The frequency and
severity of its mistakes are significantly reduced, but more importantly, its
mistakes are understandable. (Some of the improvement in this respect may
be due to the elimination of the noisy teacher signal described in [7].)

5. Conclusions

We have seen that, in the domain of backgammon, the introduction of the
comparison training paradigm has resulted in networks which perform much
better, with vastly reduced numbers of weights, and with input coding schemes
that are much simpler and easier to understand. It was surprising that such
high performance could be obtained in “perceptron” networks, i.e., networks
without hidden units. This reminds us that one should not summarily dis-
miss perceptrons as uninteresting or unworthy of study because they are only
capable of learning linearly separable functions [3]. A substantial component
of many difficult real-world problems may lic in the lincarly separable spec-
trum, and thus it makes sensc to try perceptrons at least as a first attempt.
It was also surprising that the use of hidden units in the comparison-trained
networks does not improve the performance. This is unexplained, and is the
subject of current research. It is, however, not without precedent: in at least
one other real-world application [4], it has been found that networks with
hidden units do not perform any better than networks without hidden units.

More generally, one might conclude that, in training a neural network (or
indeed any learning system) from human expert examples in a complex do-
main, there should be a good match between the natural form of the expert’s
knowledge and the method by which the network is trained. For domains in
which the expert must select a preferred alternative from a set of alternatives,

105



106

Tesauro

the expert naturally thinks in terms of comparisons amongst the top few al-
ternatives, and the comparison paradigm proposed here takes advantage of
that fact. It would be possible in principle to train a nretwork using absolute
evaluations, but the creation of such a training set might be too difficult to
undertake on a large scale.

If the above discussion is correct, then the comparison paradigm should be
useful in other applications involving expert choice, and in other learning
systems besides connectionist networks. Typically expert systems are hand-
crafted by knowledge engineers, rather than learned from hnman expert ex-
amples; however, there has recently been some interest in supervised learning
approaches. It will be interesting to see if the comparison paradigm proves to
be useful when supervised learning procednres are applied to other domains
involving expert choice. In using the comparison paradigm, it will be impor-
tant to have some way to guarantee that the system’s comparisons will be
unambiguous and transitive. For fecd-forward networks, it was shown in this
paper how to gnarantec this using symmetric, separated networks; it shonld
be possible to impose similar constraints on other learning systems to enforce
consistency.

References

[1] H. Berliner, “On the construction of evaluation functions for large domains,”

Proc. of IJCAT (1979) 53-55.

[2] S. I. Gallant, “Conncctionist expert systems,” Comm. ACM 81, 152-169
(1988).

[3] M. Minsky and S. Papert, Perceptrons, MIT Press, Cambridge MA (1969).

[4] N. Qian and T. J. Sejnowski, “Predicting the secondary structure of globular
proteins using neural network models,” J. Mol. Biol. 202, 865 881 (1988).

[5] D. E. Rumelart and J. I.. McClelland (eds.), Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Vols. | and 2, MIT Press,

Cambridge MA (1986).

[6] G. Tesauro, “Neural network defeats creator in backgammon match.” Univ.
of TWinois, Center for Complex Systems Technical Report COSR-88-6 (1988).

[7] G. Tesauro and T. J. Sejnowski, “A parallel nctwork that learns to play
backgammon,” Artificial Intclligence, in press (1989).



