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ABSTRACT 

Kevin J. Moon 

A digital realisation of two-dimensional self-organising feature 
maps is presented. The method is based on subspace 
classification using an n-tuple technique. Weight vector 
approximation and orthogonal projections to produce a winner­
takes-all network are also discussed. Over one million effective 
binary weights can be applied in 25ms using a conventional 
microcomputer. Details of a number of image recognition tasks, 
including character recognition and object centring, are 
described. 

INTRODUCTION 

Background 

The overall aim of our work is to develop fast and flexible systems for image 
recognition, usually for commercial inspection tasks. There is an urgent need for 
automatic learning systems in such applications, since at present most systems 
employ heuristic classification techniques. This approach requires an extensive 
development effort for each new application, which exaggerates implementation 
costs; and for many tasks, there are no clearly defined features which can be 
employed for classification. Enquiring of a human expert will often only produce 
"good" and "bad" examples of each class and not the underlying strategies which 
he may employ. Our approach is to model in a quite abstract way the perceptual 
networks found in the mammalian brain for vision. A back-propagation network 
could be employed to generalise about the input pattern space, and it would find 
some useful representations. However, there are many difficulties with this 
approach, since the network structure assumes nothing about the input space and 
it can be difficult to bound complicated feature clusters using hyperplanes. The 
mammalian brain is a layered structure, and so another model may be proposed 
which involves the application of many two-dimensional feature maps. Each map 
takes information from the output of the preceding one and performs some type of 
clustering analysis in order to reduce the dimensionality of the input information. 
For successful recognition, similar patterns must be topologically close so that 
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novel patterns are in the same general area of the feature map as the class they 
are most like. There is therefore a need for both global and local ordering 
processes within the feature map. The process of global ordering in a topological 
map is termed, by Kohonen (1984), as self-organisation. 
It Is important to realize that all feedforward networks perform only one function, 
namely the labelling of areas in a pattern space. This paper concentrates on a 
technique for realising large, fast, two-dimensional feature maps using a purely 
digital implementation. 

Figure 1. Unbounded Feature Map of Local Edges 

Self Organisation 

Global ordering needs to adapt the entire neural map, but local ordering needs 
only local information. Once the optimum global organisation has been found, 
then only more localised ordering can improve the topological organisation. This 
process is the basis of the Kohonen clustering algorithm, where the specified area 
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of adaption decreases with time to give an increasing local ordering. It has been 
shown that this approach gives optimal ordering at global and local levels (Oja, 
1983). It may be considered as a dimensionality reduction algorithm, and can be 
used as a vector quantiser. 

Although Kohonen's self-organising feature maps have been successfully applied 
to speech recognition (Kohonen, 1988; Tattersall et aI., 1988), there has been little 
Investigation in their application for image recognition. Such feature maps can be 
used to extract various image primitives, such as textures, localised edges and 
terminations, at various scales of representations (Johnson and Allinson, 1988). 

As a simple example, a test image of concentric circles is employed to construct a 
small feature map of localised edges (Figure 1). The distance measure used is the 
normalised dot product since in general magnitude information is unimportant. 
Under these conditions, each neuron output can be considered a similarity 
measure of the directions between the input pattern and the synaptic weight 
vector. This map shows that similar edges have been grouped together and that 
inverses are as far from each other as possible. 

DIGITAL IMPLEMENTATION 

Sub-Space Classification 

Although a conventional serial computer is normally thought of as only performing 
one operation at a time, there is a task which it can successfully perform involving 
parallel computation. The action of addressing memory can be thought of as a 
hi&JhlY parallel process, since it involves the comparison of a word, W, with a set ~ 
2 others where N is the number of bits in W. It is, in effect, performing 2 
parallel computations - each being a single match. This can be exploited to speed 
up the simulation of a network by using a conversion between conventional 
pattern space labelling and binary addressing. 

Figure 2 shows how the labelling of two-dimensional pattern space is equivalent to 
the partitioning of the same space by the decision regions of a multiple layer 
perceptron. If each quantised part of the space is labelled with a number for each 
class then all that is necessary is for the pattern to be used as an address to give 
the stored label (i.e. the response) for each class. These labels may form a cluster 
of any shape and so multiple layers are not required to combine regions. 
The apparent flaw in the above suggestion is that for anything other than a trivial 
problem, the labelling of every part of pattern space is impractical. For example a 
32 x 32 input vector would require a memory of 21024 words per unit! What is 
needed is a coding system which uses some basic assumptions about patterns in 
order to reduce the memory requirements. One assumption which can be made 
is that patterns will cI uster together into various classes. As early as 1959, a 
method known as the n-tuple technique was used for pattern recognition (Bledsoe 
and Browning, 1959). This technique takes a number of subspaces of the pattern 
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LABELING 
The labeling of a quantized 
subspace is equivalent to 
the partitioning of pattern 
space by the multi-layer 
perceptron. 

Figure 2. Comparison of Perceptron and Sub-Space Classification 

space and uses the sum of the resultant labels as the overall response. This gives 
a set of much smaller memories and inherent in the coding method is that similar 
patterns will have identical labels. 

For example, assume a 16 bit pattern - 0101101001010100. Taking a four-bit 
sample from this, say bits 0-3, giving 0100. This can be used to address a 16 word 
memory to produce a single bit. If this bit is set to 1, then it is in effect labelling all 
patterns with 0100 as their first four bits; that is 4096 patterns of the form 
xxxxxxxxxxxx0100. Taking a second sample, namely bits 4-7 (0101). This labels 
xxxxxxxx0101xxxx patterns, but when added to the first sample there will be 256 
patterns labelled twice (namely, xxxxxxxx01010100) and 7936 (Le. 8192-256) 
labelled once. The third four-bit sample produces 16 patterns (namely, 
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xxx(101001010100) labelled three times. The fourth sample produces only one 
pattem 0101101001010100, which has been labelled four times. If an input pattern 
is applied which differs from this by one bit, then this will now be labelled three 
times by the samples; if it differs by two bits, it will either be labelled two or three 
times depending on whether the changes were in the same four-bit sample or not. 
Thus a distance measure is implicit in the coding method and reflects the 
assumed clustering of patterns. Applying this approach to the earlier problem of a 
32 x 32 binary input vector and taking 128 eight-bit samples results in a distance 
measure between 0 and 128 and uses 32K bits of memory per unit. 

Weight Vector Approximation 

It is possible to make an estimate of the approximate weight vector for a particular 
sample from the bit table. For simplicity, consider a binary image from which t 
samples are taken to form a word, w, where 

t-1 
w = xo + 2x1 + .... + 2 ~-1 

This word can be used to address a vector W. Every bit in W[b] which is 1 either 
increases the weight vector probability where the respective bit in the address is 
set, or decreases if it is clear. Hence, if BIT [w,i] is the ith bit of wand A[i] is the 
contents of the memory {O, 1} then, 

2t-1 

W[b] = E A[i] (2 BIT(b,i) -1) 
i = 0 

This represents an approximate measure of the weight element. Table 1 
demonstrates the principle for a four-bit sample memory. Given randomly 
distributed inputs this binary vector is equivalent to the weight vector [2, 4, 0, -2]. 

If there is a large number of set bits in the memory for a particular unit then that 
will always give a high response - that is, it will become saturated. However, if 
there are too few bits set, this unit will not rfiSpond strongly to a general set of 
patterns. The number of bits must, therefore, be fixed at the start of training, 
distributed randomly within the memory and only redistribution of these bits 
allowed. Set bits could be taken from any other sample, but some samples will be 
more important than others. The proportion of 1's in an image should not be used 
as a measure, otherwise large uniform regions will be more significant than the 
pattern detail. This is a form of magnitude independent operation similar to the 
use of the normalised dot product applied in the analogue approach and so bits 
may only be moved from addresses with the same number of set bits as the 
current address. 
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TABLE 1. Weight Vector Approximation 

Address Weight change Address Weight change 

X3 x2 x, Xo A W3 W2 W, W x3 x2 x, Xo A W3 W2 W, Wo 
0 

0 0 0 0 0 1 0 0 0 1 + -

0 0 0 1 0 1 0 0 1 0 

0 0 1 0 0 1 0 1 0 0 

a 0 1 1 1 + + 1 0 1 1 0 

0 1 0 0 1 + - 1 1 0 0 1 + + -

0 1 0 1 0 1 1 0 1 1 + + - + 

0 1 1 0 1 + + - 1 1 1 0 1 + + + -

0 1 1 1 0 1 1 1 1 1 + + + + 

Equivalent weight vector 2 4 0-2 

Orthogonal Projections 

In order to speed up the simulation further, instead of representing each unit by a 
single bit in memory, each unit can be represented by a combination of bits. 
Hence many calculations can be effectively computed in parallel. The number of 
units which require a 1 for a particular sample will always be relatively small, and 
hence these can be coded. The coding method employed is to split the binary 
word, W, into x and y fields. These projection fields address a two dimensional 
map and so provide a fast technique of approximating the true content of the 
memory. The x bits are summed separately to the y bits, and together they give a 
good estimate of the unit co-ordinates with the most bits set in x and in y. This 
map becomes, in effect, a winner-takes-all network. The reducing neighbourhood 
of adaption employed in the Kohonen algorithm can also be readily incorporated 
by applying an overall mask to this map during the training phase. 

Though only this output map is required during normal application of the system 
to image recognition tasks, it is possible to reconstruct the distribution of the two­
dimensional weight vectors. Figure 3, using the technique illustrated in Table 1, 
shows this weight vector map for the concentric circle test image applied 
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Figure 3. Reconstructed Feature Map of Local Edges 

previously in the conventional analogue approach. This is a small digitised map 
containing 32 x 32 elements each with 16 x 16 input units and can be applied, 
using a general purpose desktop microcomputer running at 4 mips, in a few 
milliseconds. 

APPLICATION EXAMPLES 

Character Recognition 

Though a long term objective remains the development of general purpose 
computer vision systems, with many layers of interacting feature maps together 
with suitable pre- and post-processing, many commercial tasks require decisions 
based on a constricted range of objects - that is their perceptual set is severely 
limited. However, ease of training and speed of application are paramount. An 
example of such an application involves the recognition of characters. 

Figures 4 and 5 show an input pattern of hand-drawn A's and B's. The network, 
using the above digital technique, was given no information concerning the input 
image and the input window of 32 x 32 pixels was placed randomly on the image. 
,The network took less than one minute to adapt and can be applied in 25 ms. This 
network is a 32 x 32 feature map of 32 x 32 elements, thus giving over one million 
effective weights. The output map forms two distinct clusters, one for A's in the 
top right corner of the map (Figure 4), and one for B's in the bottom left corner 
(Figure 5). If further characters are introduced in the input image then the output 
map will, during the training phase, self-organise to incorporate them. 
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Figure 4. Trained Network Response for 'A' in Input Window 

Figure 5. Trained Network Response for 'B' in Input Window 
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Corrupted Images 

Once the maximum response from the map is known, then the parts of the input 
window which caused it can be reconstructed to provide a form of ideal input 
pattern. The reconstructed input pattern is shown in the figures beneath the input 
image. This reconstruction can be employed to recognise occuluded patterns or 
to eliminate noise in subsequent input images. 

Figure 6. Trained Network Response for Corrupted 'A' in Input Window. 
Reconstructed Input Pattern Shown Below Test Image 

Figure 6 shows the response of the network, trained on the input image of Figures 
4 and 5, to a corrupted image of A's and B's. It has still managed to recognise the 
input character as an A, but the reconstructed version shows that the extra noise 
has been eliminated. 

Object Centring 

The centering of an object within the input window permits the application of 
conformant mapping strategies, such as polar exponential grids, to be applied 
which yields scale and rotation invariant recognition. The same network as 
employed in the previous example was used, but a target position for the 
maximum network response was specified and the network was adapted half-way 
between this and the actual maximum response location. 
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Figure 7. Trained Network Response for Off-Centred Character. Input Window is 
Low-Pass Filtered as shown. 

Figure 7 shows such a network. When the response is in the centre of the output 
map then an input object (character) is centred in the recognition window. In the 
example shown, there is an off-centred response of the trained network for an off­
centred character. This deviation is used to change the position of the input 
window. Once centering has been achieved, object recognition can occur. 

CONCLUSIONS 

The application of unsupervised feature maps for image recognition has been 
demonstrated. The digital realisation technique permits the application of large 
maps. which can be applied in real time using conventional microcomputers. The 
use of orthogonal projections to give a winner-take-all network reduces memorY 
requirements by approximately 3D-fold and gives a computational cost of O(n 1/2), 
where n is the number of elements in the map. The general approach can be 
applied in any form of feedforward neural network. 
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