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Abstract 

Eric S. Reifsnider 

A number of learning models have recently been proposed which 
involve calculations of temporal differences (or derivatives in 
continuous-time models). These models. like most adaptive network 
models. are formulated in tenns of frequency (or activation), a useful 
abstraction of neuronal firing rates. To more precisely evaluate the 
implications of a neuronal model. it may be preferable to develop a 
model which transmits discrete pulse-coded information. We point out 
that many functions and properties of neuronal processing and learning 
may depend. in subtle ways. on the pulse-coded nature of the informa­
tion coding and transmission properties of neuron systems. When com­
pared to formulations in terms of activation. computing with temporal 
derivatives (or differences) as proposed by Kosko (1986). Klopf 
(1988). and Sutton (1988). is both more stable and easier when refor­
mulated for a more neuronally realistic pulse-coded system. In refor­
mulating these models in terms of pulse-coding. our motivation has 
been to enable us to draw further parallels and connections between 
real-time behavioral models of learning and biological circuit models 
of the substrates underlying learning and memory. 

INTRODUCTION 

Learning algorithms are generally defined in terms of continuously-valued levels of input 
and output activity. This is true of most training methods for adaptive networks. (e.g .• 
Parker. 1987; Rumelhart. Hinton. & Williams, 1986; Werbos. 1974; Widrow & Hoff, 
1960). and also for behavioral models of animal and hwnan learning. (e.g. Gluck & 
Bower. 1988a, 1988b; Rescorla & Wagner. 1972). as well as more biologically oriented 
models of neuronal function (e.g .• Bear & Cooper, in press; Hebb, 1949; Granger. 
Abros-Ingerson, Staubli, & Lynch, in press; Gluck & Thompson, 1987; Gluck. 
Reifsnider. & Thompson. in press; McNaughton & Nadel. in press; Gluck & Rumelhart. 
in press). In spite of the attractive simplicity and utility of the "activation" construct 
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neurons use discrete trains of pulses for the transmission of information from cell to cell. 
Frequency (or activation) is a useful abstraction of pulse trains. especially for bridging 
the gap between whole-animal and single neuron behavior. To more precisely evaluate 
the implications of a neuronal model. it may be preferable to develop a model which 
transmits discrete pulse-coded information; it is possible that many functions and proper­
ties of neuronal processing and learning may depend. in subtle ways. on the pulse-coded 
nature of the information coding and transmission properties of neuron systems. 

In the last few years, a number of learning models have been proposed which involve 
computations of temporal differences (or derivatives in continuous-time models). Klopf 
(1988) presented a formal real-time model of classical conditioning that predicts the 
magnitude of conditioned responses (CRs). given the temporal relationships between 
conditioned stimuli (eSs) and an unconditional stimulus (US). Klopf's model incor­
porates a "differential-Hebbian" learning algorithm in which changes in presynaptic lev­
els of activity are correlated with changes in postsynaptic levels of activity. Motivated 
by the constraints and motives of engineering. rather than animal learning. Kosko (1986) 
proposed the same basic rule and provided extensive analytic insights into its properties. 
Sutton (1988) introduced a class of incremental learning procedures. called "temporal 
difference" methods. which update associative (predictive) weights according to the 
difference between temporally successive predictions. In addition to the applied potential 
of this class of algorithms. Sutton & Barto (1987) show how their model. like Klopf's 
(1988) model. provides a good fit to a wide range of behavioral data on classical condi­
tioning. 

These models. all of which depend on computations involving changes over time in 
activation levels. have been successful both for predicting a wide range of behavioral 
animal learning data (Klopf. 1988; Sutton & Barto. 1987) and for solving useful 
engineering problems in adaptive prediction (Kosko. 1986; Sutton. 1988). The possibility 
that these models might represent the computational properties of individual neurons. 
seems, at first glance. highly unlikely. However. we show by reformulating these models 
for pulse-coded communication (as in neuronal systems) rather than in terms of abstract 
activation levels. the computational soundness as well as the biological relevance of the 
models is improved. By avoiding the use of unstable differencing methods in computing 
the time-derivative of activation levels. and by increasing the error-tolerance of the com­
putations, pulse coding will be shown to improve the accuracy and reliability of these 
models. The pulse coded models will also be shown to lend themselves to a closer com­
parison to the function of real neurons than do models that operate with activation levels. 
As the ability of researchers to directly measure neuronal behavior grows. the value of 
such close comparisons will increase. As an example. we describe here a pulse-coded 
version of Klopf's differential-Hebbian model of classification learning. Further details 
are contained in Gluck. Parker. & Reifsnider. 1988. 
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Pulse-Coding in Neuronal Systems 

We begin by outlining the general theory and engineering advantages of pulse-coding 
and then describe a pulse-coded refonnulation of differential-Hebbian learning. The key 
idea is quite simple and can be summarized as follows: Frequency can be seen, loosely 
speaking, as an integral of pulses; conversely, therefore, pulses can be thought of as car­
rying infonnation about the derivatives of frequency. Thus, computing with the "deriva­
tives of frequency" is analogous to computing with pulses. As described below, our 
basic conclusion is that differential-Hebbian learning (Klopf, 1988; Kosko, 1986) when 
refonnulated for a pulse-coded system is both more stable and easier to compute than is 
apparent when the rule is fonnulated in tenns of frequencies. These results have impor­
tant implications for any learning model which is based on computing with time­
derivatives, such as Sutton's Temporal Difference model (Sutton, 1988; Sutton & Barto, 
1987) 

There are many ways to electrically transmit analog information from point to point. 
Perhaps the most obvious way is to transmit the infonnation as a signal level. In elec­
tronic systems, for example, data that varies between 0 and 1 can be transmitted as a vol­
tage level that varies between 0 volts and 1 volt This method can be unreliable, how­
ever, because the receiver of the information can't tell if a constant DC voltage offset has 
been added to the information, or if crosstalk has occurred with a nearby signal path. To 
the exact degree that the signal is interfered with, the data as read by the receiver will be 
erroneously altered. The consequences of faults appearing in the signal are particularly 
serious for systems that are based on derivatives of the signal. In such systems, even a 
small, but sudden, unintended change in signal level can drastically alter its derivative, 
creating large errors. 

A more reliable way to transmit analog information is to encode it as the frequency of a 
series of pulses. A receiver can reliably detennine if it has received a pulse, even in the 
face of DC voltage offsets or moderate crosstalk. Most errors will not be large enough to 
constitute a pulse, and thus will have no effect on the transmitted infonnation. The 
receiver can count the number of pulses received in a given time window to detennine 
the frequency of the pulses. Further infonnation on encoding analog infonnation as the 
frequency of a series of pulses can be found in many electrical engineeri.ng textbooks 
(e.g., Horowitz & Hill, 1980). 

As noted by Parker (1987), another advantage of coding an analog signal as the fre­
quency of a series of pulses is that the time derivative of the signal can be easily and 
stably calculated: If x (t) represents a series of pulses (x equals 1 if a pulse is occuring at 
time t; otherwise it equals 0) then we can estimate the frequency, f (t), of the series of 
pulses using an exponentially weighted time average: 

f (t) = Jllx ('t)e-Jl{t-'t) d't 
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where Jl is the decay constant. The well known formula for the derivative of 1 (t) is 

AtJP- = Jl~(t)-/(t)) 

Thus. the time derivative of pulse-coded information can be calculated without using any 
unstable differencing methods. it is simply a function of presence or absence of a pulse 
relative to the current expectation (frequency) of pulses. As described earlier. calculation 
of time derivatives is a critical component of the learning algorithms proposed by Klopf 
(1988). Kosko (1986) and Sutton (Sutton. 1988; Sutton & Barto 1987). They are also an 
important aspect of 2nd order (pseudo-newtonian) extensions of the backpropogation 
learning rule for multi-layer adaptive "connectionist" networks (parker. 1987). 

Summary 01 Klopf s Model 

Klopf (1988) proposed a model of classical conditioning which incorporates the same 
learning rule proposed by Kosko (1986) and which extends some of the ideas presented 
in Sutton and Barto's (1981) real-time generalization of Rescorla and Wagner's (1972) 
model of classical conditioning. The mathematical specification of Klopf s model con­
sists of two equations: one which calculates output signals based on a weighted sum of 
input signals (drives) and one which determines changes in synapse efficacy due to 
changes in signal levels. The specification of signal output level is defined as 

where: y (t ) is the measure of postsynaptic frequency of firing at time t; Wi (t) is the 
efficacy (positive or negative) of the i th synapse; Xi (t) is the frequency of action poten­
tials at the i th synapse; 9 is the threshold of firing; and n is the number of synapses on 
the "neuron". This equation expresses the idea that the postsynaptic firing frequency 
depends on the summation of the weighted presynaptic firing frequencies. Wi (t )Xi (t ). 
relative to some threshold. 9. The learning mechanism is defined as 

where: ~Wi (t) is the change in efficacy of the i th synapse at time t; ~y (t) is the change 
in postsynaptic firing at time t; 't' is the longest interstimulus interval over which delayed 
conditioning is effective. The C j are empirically established learning rate constants -­
each corresponding to a different inter-stimulus interval. 

In order to accurately simulate various behavioral phenomena observed in classical con­
ditioning. Klopf adds three ancillary assumptions to his model. First. he places a lower 
bound of 0 on the activation of the node. Second. he proposes that changes in synaptic 
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weight, ~w; (t), be calculated only when the change in presynaptic signal level is positive 
-- that is, when Ax; (t-j) > O. Third, he proposes separate excitatory and inhibitory 
weights in contrast to the single real-valued associative weights in other conditioning 
models (e.g., Rescorla & Wagner, 1972; Sutton & Barto, 1981). It is intriguing to note 
that all of these assumptions are not only sufficiently justified by constraints from 
behavioral data but are also motivated by neuronal constraints. For a further examination 
of the biological and behavioral factors supporting these assumptions see Gluck, Parker, 
and Reifsnider (1988). 

The strength of Klopf's model as a simple formal behavioral model of classical condi­
tioning is evident. Although the model has not yielded any new behavioral predictions, it 
has demonstrated an impressive ability to reproduce a wide, though not necessarily com­
plete, range of Pavlovian behavioral phenomena with a minimum of assumptions. 

Klopf (1988) specifies his learning algorithm in terms of activation or frequency levels. 
Because neuronal systems communicate through the transmission of discrete pulses, it is 
difficult to evaluate the biological plausibility of an algorithm when so formulated. For 
this reason, we present and evaluate a pulse-coded reformulation of Klopf's model. 

A Pulse-Coded Reformulation of Klopf s Model 

We illustrate here a pulse-coded reformulation of Klopf's (1988) model of classical con­
ditioning. The equations that make up the model are fairly simple. A neuron is said to 

have fired an output pulse at time t if vet) > e, where e is a threshold value and vet) is 
defined as follows: 

vet) = (l-d)v(t-l) + !:Wi(t)Xi(t) (1) 

where v (t) an auxiliary variable, d is a small positive constant representing the leakage 
or decay rate, Wi (t) is the efficacy of synapse i at time t, and Xi (t) is the frequency of 
presynaptic pulses at time t at synapse i. The input to the decision of whether the neuron 
will fire consists of the weights and efficacies of the synapses as well as information 
about previous activation levels at the neuronal output Note that the leakage rate, d, 
causes older information about activation levels to have less impact on current values of 
v (t) than does recent information of the same type. 

The output of the neuron, p (t), is: 

v (t) > e then p (t) = 1 (pulse generated) 
v (t ) ~ e then p (t) = 0 (no pulse generated) 

It is important that once p (t) has been determined, v (t) will need to be adjusted if 
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p (t) = 1. To reflect the fact that the neuron has fired, (i.e., p (t) = 1) then v (t) = v (t) - 1. 
This decrement occurs after p (t) has been determined for the current t. Frequencies of 
pulses at the output node and at the synapses are calculated using the following equa­
tions: 

/ (t) = / (t-l) + 11/(t) 

where 

11/ (t) = m(p (t) - / (t-l)) 

where / (t) is the frequency of outgoing pulses at time t; p (t) is the ouput (1 or 0) of the 
neuron at time t ; and m is a small positive constant representing a leakage rate for the 
frequency calculation. 

Following Klopf (1988), changes in synapse efficacy occur according to 

(2) 

where 

I1Wi(t) = Wi (t+l) - Wi(t) 

and l1y (t) and ru:i (t) are calculated analogously to 11/ (t); 't is the longest interstimulus 
interval (lSI) over which delay conditioning is effective; and C j is an empirically esta­
blished set of learning rates which govern the efficacy of conditioning at an lSI of j . 
Changes in Wi (t) are governed by the learning rule in Equation 2 which alters v (t) via 
Equation 1. 

Figure 1 shows the results of a computer simulation of a pulse-coded version of Klopf's 
conditioning model. The first graph shows the excitatory weight (dotted line) and inhibi­
tory weight (dashed line) of the CS "synapse". Also on the same graph is the net synaptic 
weight (solid line), the sum of the excitatory and inhibitory weights. The subsequent 
graphs show CS input pulses, US input pulses, and the output (CR) pulses. The simula­
tion consists of three acquisition trials followed by three extinction trials. 
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Figure 1. Simulation of pulse.coded version of Klopf's conditioning model. 
Top panel shows excitatory and inhibitory weights as dashed lines and the net 
synaptic weight of the CS as a solid line. Lower panels show the CS and US 
inputs and the CR output. 

As expected, excitatory weight increases in magnitude over the three ~quisition trials, 
while inhibitory weight is stable. During the first two extinction trials, the excitatory and 
the net synaptic weights decrease in magnitude, while the inhibitory weight increases. 
Thus, the CS produces a decreasing amount of output pulses (the CR). During the third 
extinction trial the net synaptic weight is so low that the CS cannot produce output 
pulses, and so the CR is extinct. However, as net weight and excitatory weight remain 
positive, there are residual effects of the acquisition which will accelerate reacquisition. 
Because a threshold must be reached before a neuronal output pulse can be emitted, and 
because output must occur for weight changes to occur, pulse coding adds to the 
accelerated reacquisition effect that is evident in the original Klopf model; extinction is 
halted before net weight is zero, when pulses can no longer be produced. 
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Discussion 

To facilitate comparison between learning algorithms involving temporal derivative com­
putations and actual neuronal capabilities. we formulated a pulse-coded variation of 
Klopfs classical conditioning model. Our basic conclusion is that computing with tem­
poral derivatives (or differences) as proposed by Kosko (1986). Klopf (1988). and Sutton 
(1988). is more stable and easier when reformulated for a more neuronally realistic. 
pulse-coded system. than when the rules are fonnulated in terms of frequencies or activa­
tion. 

It is our hope that further examination of the characteristics of pulse-coded systems may 
reveal facts that bear on the characteristics of neuronal function. In refonnulating these 
algorithms in terms of pulse-coding. our motivation has been to enable us to draw further 
parallels and connections between real-time behavioral models of learning and biological 
circuit models of the substrates underlying classical conditioning. (e.g .• Thompson. 1986; 
Gluck & Thompson. 1987; Donegan. Gluck. & Thompson. in press). More generally. 
noting the similarities and differences between algorithmic/behavioral theories and bio­
logical capabilities is one way of laying the groundwork for developing more complete 
integrated theories of the biological bases of associative learning (Donegan. Gluck. & 
Thompson. in press). 

Acknowledgments 

Correspondence should be addressed to: Mark A. Gluck. Dept of Psychology. Jordan 
Hall; Bldg. 420. Stanford. CA 94305. For their commentary and critique on earlier drafts 
of this and related papers. we are indebted to Harry Klopf. Bart Kosko. Richard Sutton. 
and Richard Thompson. This research was supported by an Office of Naval Research 
Grant to R. F. Thompson and M. A. Gluck. 

References 

Bear. M. F., & Cooper, L. N. (in press). Molecular mechanisms for synaptic modification in the 
visual cortex: Interaction between theory and experiment. In M. A. Gluck, & D. E. 
Rumelhart (Eds.), Neuroscience and Connectionist Theory. Hillsdale, N.J.: Lawrence Erl­
baum Associates .. 

Donegan, N. H., Gluck, M. A., & Thompson, R. F. (1989). Integrating behavioral and biological 
models of classical conditioning. In R. D. Hawkins, & G. H. Bower (Eds.), Computational 
models of learning in simple neural systems (Volume 22 of the Psychology of Learning and 
Motivation). New York: Academic Press. 

Gluck, M. A., & Bower. G. H. (1988a). Evaluating an adaptive network model of human learning. 
Journal of Memory and Language, 27, 166-195. 

Gluck, M. A., & Bower, G. H. (1988b). From conditioning to category learning: An adaptive net­
work model. Journal of Experimental Psychology: General, 117(3), 225-244. 



Learning with Temporal Derivatives 203 

Gluck, M. A., Parker, D. B., & Reifsnider, E. (1988). Some biological implications of a 
differential-Hebbian learning rule. Psychobiology, 16(3), 298-302. 

Gluck, M. A, Reifsnider, E. S., & Thompson, R. F. (in press). Adaptive signal processing and tem­
poral coarse coding: Cerebellar models of classical conditioning and VOR Adaptation. In 
M. A. Gluck, & D. E. Rumelhart (Eds.), Neuroscience and Connectionist Theory. Hillsdale, 
N.1.: Lawrence Erlbaum Associates .. 

Gluck, M. A, & Rumelhart, D. E. (in press). Neuroscience and Connectionist Theory. Hillsdale, 
N.J.: Lawrence Erlbaum Associates .. 

Gluck, M. A., & Thompson, R. F. (1987). Modeling the neural substrates of associative learning 
and memory: A computational approach. Psychological Review, 94, 176-191. 

Granger, R., Ambros-Ingerson, 1., Staubli, U., & Lynch, G. (in press). Memorial operation of multi­
pIe, interacting simulated brain structures. In M. A. Gluck, & D. E. Rumelhart (Eds.), Neu­
roscience and Connectionist Theory. Hillsdale, N.J.: Lawrence Erlbaum Associates .. 

Hebb, D. (1949). Organization of Behavior. New York: Wiley & Sons. 
Horowitz, P., & Hill, W. (1980). The Art of Electronics. Cambridge, England: Cambridge Univer­

sity Press. 
Klopf, A. H. (1988). A neuronal model of classical conditioning. Psychobiology, 16(2), 85-125. 
Kosko, B. (1986). Differential hebbian learning. In 1. S. Denker (Ed.), Neural Networksfor Com­

puting, AlP Conference Proceedings 151 (pp. 265-270). New York: American Institute of 
Physics. 

McNaughton, B. L., & Nadel, L. (in press). Hebb-Marr networks and the neurobiological represen­
tation of action in space. In M. A. Gluck, & D. E. Rumelhart (Eds.), Neuroscience and Con­
nectionist Theory. Hillsdale, N.J.: Lawrence Erlbaum Associates .. 

Parker, D. B. (1987). Optimal Algorithms for Adaptive Networks: Second Order Back Propaga­
tion, Second Order Direct Propagation, and Second Order Hebbian Learning. Proceedings 
of the IEEE First Annual Conference on Neural Networks. San Diego, California:, . 

Rescorla. R. A, & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the 
effectiveness of reinforcement and non-reinforcement. In A. H. Black, & W. F. Prokasy 
(Eds.), Classical conditioning II: Current research and theory. New York: Appleton­
Century-Crofts. 

RumeIhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by 
error propogation. In D. Rumelhart, & 1. McClelland (Eds.), Parallel distributed process­
ing: Explorations in the microstructure of cognition (Vol. 1: Foundations). Cambridge, 
M.A.: MIT Press. 

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learn­
ing, 3, 9-44. 

Sutton, R. S., & Barto, A. G. (1981). Toward a modem theory of adaptive networks: Expectation 
and prediction. Psychological Review, 88, 135-170. 

Sutton, R. S., & Barto, A. G. (1987). A temporal-difference model of classical conditioning. In 
Proceedings of the 9th Annual Conference of the Cognitive Science Society. Seattle, WA. 

Thompson, R. F. (1986). The neurobiology ofleaming and memory. Science, 233, 941-947. 
Werbos, P. (1974). Beyond regression: New tools for prediction and analysis in the behavioral sci­

ences. Doctoral dissertation (Economics), Harvard University, Cambridge, Mass .. 
Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits. Institute of Radio Engineers, 

Western Electronic Show and Convention, Convention Record, 4,96-194. 





Part II 
Application 


