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ABSTRACT

This paper explores whether analog circuitry can adequately per-
form constrained optimization. Constrained optimization circuits
are designed using the differential multiplier method. These cir-
cuits fulfill time-varying constraints correctly. Example circuits in-
clude a quadratic programming circuit and a constrained flip-flop.

1 INTRODUCTION

Converting perceptual and cognitive tasks into constrained optimization problems
is a useful way of generating neural networks to solve those tasks. Researchers have
used constrained optimization networks to solve the traveling salesman problem
[Durbin, 1987] [Hopfield, 1985], to perform object recognition [Gindi, 1988], and to
decode error-correcting codes [Platt, 1986].

Implementing constrained optimization in analog VLSI is advantageous, because an
analog VLSI chip can solve a large number of differential equations in parallel [Mead,
1989]. However, analog circuits only approximate the desired differential equations.
Therefore, we have built test circuits to determine whether analog circuits can fulfill
user-specified constraints.

2 THE DIFFERENTIAL MULTIPLIER METHOD

The differential multiplier method (DMM) is a method for creating differential equa-
tions that perform constrained optimization. The DMM was originally proposed
by [Arrow, 1958] as an economic model. It was used as a neural network by [Platt,
1987].
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Figure 1. The architecture of the DMM. The z capacitor in the figure repre-

sents the z; neurons in the network. The —f’ box computes the current needed for

the neurons to minimize f. The rest of the circuitry causes the network to fulfill
the constraint g(Z) = 0.
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Figure 2. A circuit that implements quadratic programming. z, y, and X are
voltages. “TC” refers to a transconductance amplifier.
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A constrained optimization problem is find a Z such that f(Z) is minimized subject
to a constraint g(Z) = 0. In order to find a constrained minimum, the DMM finds
the critical points (Z,A) of the Lagrangian

£ = £(2)+ M (@), (1)

by performing gradient descent on the variables ¥ and gradient ascent on the La-
grange multiplier A:
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The DMM can be thought of as a neural network which performs gradient descent
on a function f(Z), plus feedback circuitry to find the A that causes the neural
network output to fulfill the constraint g(Z) = 0 (see figure 1).

The gradient ascent on the X is necessary for stability. The stability can be exam-
ined by combining the two equations (2) to yield a set of second-order differential

equations
d?z; o%f g '\ dz; 09 _
—Jt-é— + Z (6.’5,‘322:‘ * Aa.’c;am}' ) dt ¥ g@a:,- =0, (3)
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which is analogous to the equations that govern a spring-mass-damping system.
The differential equations (3) converge to the constrained minima if the damping

matrix
_ o dg
M = 8::,-6:::1- +4 32!;3125 (4)

is positive definite.

The DMM can be extended to satisfy multiple simultaneous constraints. The sta-
bility of the DMM can also be improved. See [Platt, 1987] for more details.

3 QUADRATIC PROGRAMMING CIRCUIT

This section describes a circuit that solves a specific quadratic programming prob-
lem for two variables. A quadratic programming circuit is interesting, because the
basic differential multiplier method is guaranteed to find the constrained minimum.
Also, quadratic programming is useful: it is frequently a sub-problem in a more
complex task. A method of solving general nonlinear constrained optimization is
sequential quadratic programming [Gill, 1981].

We build a circuit to solve a time-dependent quadratic programming problem for
two variables:

min A(z — z0)* + B(y — w)?, (5)

subject to the constraint

Cz + Dy + E(t) = 0. (6)
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Constraint Fulfillment for Quadratic Programming
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Figure 3. Plot of two input voltages of transconductance amplifier. The
dashed line is the externally applied voltage E(t). The solid line is the circuit’s
solution of —Cz — Dy. The constraint depends on time: the voltage E(t) is a
square wave. The linear constraint is fulfilled when the two voltages are the same.
When E(t) changes suddenly, the circuit changes —Cz — Dy to compensate. The
unusually shaped noise is caused by digitization by the oscilloscope.

Constraint Fulfillment with Ringing
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Figure 4. Plot of two input voltages of transconductance amplifier: the con-
straint forces are increased, which causes the system to undergo damped oscillations
around the constraint manifold.



Analog Circuits for Constrained Optimization

The basic differential multiplier method converts the quadratic programming prob-
lem into a system of differential equations:

d
kld—f = —9Az + 2Azo — C),

d
szf = —2By + 2Byo — D), (7

The first two equations are implemented with a resistor and capacitor (with a fol-
lower for zero output impedance). The third is implemented with resistor summing
into the negative input of a transconductance amplifier. The positive input of the
amplifier is connected to E(t).

The circuit in figure 2 implements the system of differential equations

d
CI(T: =G1(A—2) + Ga(Ve — 2),

d

Cagl = Ga(A—y) + Ga(Vy — 1), (8)
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where K is the transconductance of the transconductance amplifier. The two sys-
tems of differential equations (7) and (8) can match with suitably chosen constants.

The circuit in figure 2 actually performs quadratic programming. The constraint is
fulfilled when the voltages on the inputs of the transconductance amplifier are the
same. The g function is a difference between these voltages. Figure 3 is a plot of
—Cz — Dy and E(t) as a function of time: they match reasonably well. The circuit
in figure 2 therefore successfully fulfills the specified constraint.

Decreasing the capacitance Cs changes the spring constant of the second-order dif-
ferential equation. The forces that push the system towards the constraint manifold
are increased without changing the damping. Therefore, the system becomes un-
derdamped and the constraint is fulfilled with ringing (see figure 4).

The circuit in figure 2 can be easily expanded to solve general quadratic program-
ming for N variables: simply add more z; neurons, and interconnect them with
resistors.

4 CONSTRAINED FLIP-FLOP

A flip-flop is two inverters hooked together in a ring. It is a bistable circuit: one
inverter is on while the other inverter is off. A flip-flop can also be considered the
simplest neural network: two neurons which inhibit each other.

If the inverters have infinite gain, then the flip-flop in figure 5 minimizes the function

G+ G G3+ G
Efip-flop = GaV1U2+ G2 VoUy — G111 Uy —Gsng2+“1“2—2U12+—§"2———4U22- 9)

781



782 Platt

Do
WA U
Vs L G 1
Lo
U, Ga
G 3 —Vi

Figure 5. A flip-flop. U; and U, are voltages.

= | A
i TC +
U:‘) AW 5> —_— C3
Gy
E(t
Gs = ®) e
G4 A =
: $Gs = ¢,

Figure 6. A circuit for constraining a flip-flop. Uy, Us, and A are voltages.
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Constraint Satisfaction for Non-Quadratic f
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Figure 7. Constraint fulfillment for a non-quadratic optimization function.
The plot consists of the two input voltages of the transconductance amplifier. Again,
E(t) is the dashed line and —Cz — Dy is the solid line. The constraint is fulfilled
when the two voltages are the same. As the constraint changes with time, the flip-
flop changes state and the location of the constrained minimum changes abruptly.
After the abrupt change, the constraint is temporarily not fulfilled. However, the
circuit quickly fulfills the constraint. The temporary violation of the constraint
causes the transient spikes in the —Cz — Dy voltage.
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Now, we can construct a circuit that minimizes the function in equation (9), subject
to some linear constraint Cz + Dy + E(t) = 0, where z and y are the inputs to the
inverters. The circuit diagram is shown in figure 6. Notice that this circuit is very
similar to the quadratic programming circuit. Now, the z and y circuits are linked
with a flip-flop, which adds non-quadratic terms to the optimization function.

The voltages —Cz — Dy and E(t) for this circuit are plotted in figure 7. For most
of the time, —Cz — Dy is close to the externally applied voltage E(t). However,
because G; # G4 and G2 # G5, the flip-flop moves from one minima to the other
and the constraint is temporarily violated. But, the circuitry gradually enforces the
constraint again. The temporary constraint violation can be seen in figure 7.

5 CONCLUSIONS

This paper examines real circuits that have been constrained with the differential
multiplier method. The differential multiplier method seems to work, even when the
underlying circuit is non-linear, as in the case of the constrained flip-flop. Other pa-
pers examine applications of the differential multiplier method [Platt, 1987] [Gindi,
1988]. These applications could be built with the same parallel analog hardware
discussed in this paper.
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