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ABSTRACT 

One of the attractions of neural network approaches to pattern 
recognition is the use of a discrimination-based training method. 
We show that once we have modified the output layer of a multi­
layer perceptron to provide mathematically correct probability dis­
tributions, and replaced the usual squared error criterion with a 
probability-based score, the result is equivalent to Maximum Mu­
tual Information training, which has been used successfully to im­
prove the performance of hidden Markov models for speech recog­
nition. If the network is specially constructed to perform the recog­
nition computations of a given kind of stochastic model based clas­
sifier then we obtain a method for discrimination-based training of 
the parameters of the models. Examples include an HMM-based 
word discriminator, which we call an 'Alphanet' . 

1 INTRODUCTION 

It has often been suggested that one of the attractions of an adaptive neural network 
(NN) approach to pattern recognition is the availability of discrimination-based 
training (e.g. in Multilayer Perceptrons (MLPs) using Back-Propagation). Among 
the disadvantages of NN approaches are the lack of theory about what can be 
computed with any partir.ular structure, what can be learned, how to choose a 
network architecture for a given task, and how to deal with data (such as speech) in 
which an underlying sequential structure is ofthe essence. There have been attempts 
to build internal dynamics into neural networks, using recurrent connections, so that 
they might deal with sequences and temporal patterns [1, 2], but there is a lack of 
relevant theory to inform the choice of network type. 

Hidden Markov models (HMMs) are the basis of virtually all modern automatic 
speech recognition systems. They can be seen as an extension of the parametric 
statistical approach to pattern recognition, to deal (in a simple but principled way) 
witli temporal patterning. Like most parametric models, HMMs are usually trained 
using within-class maximum-likelihood (ML) methods, and an EM algorithm due to 
Baum and Welch is particularly attractive (see for instance [3]). However, recently 
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some success has been demonstrated using discrimination-based training methods, 
suc.h as the so-called Maximum Mutual Information criterion [4] and Corrective 
Training[5] . 

This paper addresses two important questions: 

• How can we design Neural Network architectures with at least the desirable 
properties of methods based on stochastic models (such as hidden Markov 
models)? 

• What is the relationship between the inherently discriminative neural network 
training and the analogous MMI training of stochastic models? 

We address the first question in two steps. Firstly, to make sure that the outputs 
of our network have the simple mathematical properties of conditional probability 
distributions over class labels we recommend a generalisation of the logistic nonlin­
earity; this enables us (but does not require us) to replace the usual squared error 
criterion with a more appropriate one, based on relative entropy. Secondly, we 
also have the option of designing networks which exactly implement the recognition 
computations of a given stochastic model method. (The resulting 'network' may be 
rather odd, and not very 'neural', but this is engineering, not biology.) As a con­
tribution to the investigation of the second question, we point out that optimising 
the relative entropy criterion is exactly equivalent to performing Maximum Mutual 
Information Estimation. 

By way of illustration we describe three 'networks' which implement stochastic 
model classifiers, and show how discrimination training can help. 

2 TRAINABLE NETWORKS AS PARAMETERISED CON­
DITIONAL DISTRIBUTION FUNCTIONS 

We consider a trainable network, when used for pattern classification, as a vector 
function Q( re, 8) from an input vt>ctor re to a set of indicators of class membership, 
{Qj}, j = 1, ... N. The parameters 8 modify the transfer function. In a multi­
layer perceptron, for instance, the parameters would be values of weights. Typically, 
we have a training set of pairs (ret,ct), t = 1, ... T, of inputs and associated true 
class labels, and we have to find a value for 8 which specialises the function so that 
it is consistent with the training st't. A common procedure is to minimise E( 8), the 
sum of the squart's of the differt'nces hetwt'en the network outputs and true class 
indicators, or targets: 

'1' N 

E(8) =: L L(Qj(ret, 8) - bj ,c,)2, 
t=l j==l 

where bj,c = 1 if j = c, otht'rwise O. E and Q will be written without the 8 argument 
where the meaning is clear, and wt' may drop the t subscript. 

It is well known that the value of F(~) which minimises the expected value of 
(F(~) - y)2 is the expected value of y given~. The expected value of bj,e, is 
P( C = j I X = red, the probability that the class associated with ret is the jth class. 
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From now on we shall assume that the desired output of a classifier network is this 
conditional probability distribution over classes, given the input. 

The outputs must satisfy certain simple constraints if they are to be interpretable as 
a probability distribution. For any input, the outputs must all be positive and they 
must sum to unity. The use of logistic nonlinearities at the outputs of the network 
ensures positivity, and also ensures that each output is less than unity. These 
constraints are appropriate for outputs that are to be interpreted as probabilities 
of Boolean events, but are not sufficient for I-from-N classifiers. 

Given a set of unconstrained values, Vj(:e), we can ensure both conditions by using 
a Normalised Exponential transformation: 

Qj(~) = eVj(a!) / L eVIe(~) 
Ie 

This transformation can be considered a multi-input generalisation of the logistic, 
operating on the whole output layer. It preserves the rank order of its input values, 
and is a differentiable generalisation of the 'winner-take-all' operation of picking the 
maximum value. For this reason we like to refer to it as soft max. Like the logistic, 
it has a simple implementation in transistor circuits [6]. 

If the network is such that we can be sure the values we have are all positive, it may 
be more appropriate just to normalise them. In particular, if we can treat them as 
likelihoods of the data given the possible classes, Lj(~) = P(X = ~ Ie =i), then 
normalisation produces the required conditional distribution (assuming equal prior 
probabilities for the classes). 

3 RELATIVE ENTROPY SCORING FOR CLASSIFIERS 

In this section we introduce an information-theoretic criterion for training I-from­
N classifier networks, to replace the squared error criterion, both for its intrinsic 
interest and because of the link to discriminative training of stochastic models. 
the class with highest likelihood. This is justified by 

if we assume equal priors P(c) (this can be generalised) and see that the denominator 
P(~) = Lc P(~ I c)P(c) is the same for all classes. 

It is also usual to train such classifiers by ma:¥:imising the data likelihood given 
the correct classes. Maximum Likelihood (ML) training is appropriate if we are 
choosing from a family of pdfs which includes the correct one. In most real-life 
applications of pattern classification we do not have knowledge of the form of the 
data distributions, although we may have some useful ideas. In tbat case ML may 
be a rather bad approach to pdf estimation for the purpose of pattern clauification, 
because what matters is the f'elalive densities. 

An alternative is to optimise a measure of success in pattern classification, and this 
can make a big difference to performance, particularly when the assumptions about 
the form of the class pdfs is badly wrong. 
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To make the likelihoods produced by a SM classifier look like NN outputs we can 
simply normalise them: 

Ie 

Then we can use Neural Network optimisation methods to adjust the parameters. 

a SUlll, weighted by the joint probability, of the MI of the joint events 

,.... P(X=:r,Y=y) 
I(X, Y) = ,L; P(X:=::r, Y=y)log p{X-=:r)p-(Y~Yf 

(~,y) 

For discrimination training of sets of stochastic models, Bahl et.al. suggest max­
imising the Mutual Information, I, between the training observations and the choice 
of the correspolluing correct class. 

,"" P(C =.: Ct,X=Zt) ,........... P(C=Ct IX=zt}P(X=zd 
I(X, C) = ,L; log = ,L; log . 

P(C=cdP(X=z) P(C=ct}P(X=z) t t 

P(C=Ct I X = zt} should be read as the probability that we choose the correct class 

for the tth training example. If we are choosing classes according to the conditional 
distribution computed using parameters (J then P(C=Ct IX = zd = QCt(z,(J), 
and 

If the second term involving the priors is fixed, we are left with maximising 

LlogQCt(:rt,6) = -J. 
t 

The RE-based score we use is J ..;; -- }:;:;;1 L;=l Pjtlog Qj{ zd, where Pjt is the 
probability of class j associated with input Zt 1ll the training set. If as usual the 
training set specifies only oue true class, Ct for each Zt then Pj,t = [)j,Ct and 

T 

J = -- LlogQCt(zt}, 
t=l 

the sum of the logs of the outputs for the correct classes. 

J can be derived from the Relative Entropy of distribution Q with respect to the 
true conditional distribution P, averaged over the input distribution: 

J d:r P(X = z)G(Q I P), where G(Q I P) = - L P(c I z)log ~~(Iz~)' 
C 

information, cross entropy, asymmetric divergence, directed divergence, I-divergence, 
and Kullback-Leibler number. RE scoring is the basis for the Boltzmann Machine 
learning algorithm [7] and has also been proposed and used for adaptive networks 
with continuous-valued outputs [8, 9, 10, 11], but usually in the form appropriate 
to separate logistics and independent Boolean targets. An exception is [12]. 

There is another way of thinking about this 'log-of correct-output' score. Assume 
that the way we would use the outputs of the network is that, rather than choosing 
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the class with the largest output, we choose randomly, picking from the distribution 
specified by the outputs. (Pick class j with probability Qj.) The probability of 
choosing the class Ct for training sample IBt is simply Qet (tee). The probability of 
choosing the correct class labels for all the training set is n;=1 Qet (1Bt). We simply 
seek to maximise this probability, or what is equivalent, to minimise minus its log: 

T 

J = - L log Qet(ted· 
t=l 

In order to compute the partial derivatives of J wrt to parameters of the network, we 
first need :gj -= -Pjt!Qj The details of the back-propagation depend on the form 

of the network, but if the final non-linearity is a normalised exponential (softmax), 

'"' 8Jt Qj(:l) = exp(Vj(:z:))/ Lt exp(V" (:z:)), then [6] aV- -= (Qj(:z:t) - bj,et)' 
" J 

We see that the derivative before the output nonlinearity is the difference between 
the corresponding output and a one-from-N target. We conclude that softmax 
output stages and I-from-N RE scoring are natural partners. 

4 DISCRIMINATIVE TRAINING 

In stochastic model (probability-density) based pattern classification we usually 
compute likelihoods of the data given models for each class, P(IB I c), and choose. 
So minimising our J criterion is also maximising Bahl's mutual information. (Also 
see [13).) 

5 STOCHASTIC MODEL CLASSIFIERS AS NETWORKS 
5.1 EXAMPLE ONEs A PAIR OF MULTIVARIATE GAUSSIANS 

The conditional distribution for a pair of multivariate Gaussian densities with the 
same arbitrary covariance matrix is a logistic function of a weighted sum of the 
input coordinates (plus a constant). Therefore, even if we make such incorrect 
assumptions as equal priors and spherical unit covariances, it is still possible to find 
values for the parameters of the model (the positions of the means of the assumed 
distributions) for which the form of the conditional distribution is correct. (The 
means may be far from the means of the true distributions and from the data 
means.) Of course in this case we have the alternative of using a weighted-sum 
logistic, unit to compute the conditional probability: the parameters are then the 
weights. 

5.2 EXAMPLE TWO: A MULTI-CLASS GAUSSIAN CLASSIFIER 

Consider a model in which the distributions for each class are multi-variate Gaus­
sian, with equal isotropic unit variances, and different means, {mj}. The prob­
ability distribution over class labels, given an observation IB I is P( c = j lIB) = 
e 1'; / L" e V", where V; = -IIIB - mj 112. This can be interpreted as a one-layer 
feed-forward non-linear network. The usual weighted sums are replaced by squared 
Euclidean distances, and the usual logistic output non-linearities are replaced by a 
normalised exponential. 
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For a particular two-dimensional10-class problem, derived from Peterson and Bar­
ney's formant data, we have demonstrated [6] that training such a network can 
cause the ms to move from their "natural" positions at the data means (the in-class 
maximum likelihood estimates), and this can improve classification performance on 
unseen data (from 68% correct to 78%). 

5.3 EXAMPLE THREE: ALPHANETS 

Consider a set of hidden Markov models (HMMs), one for each word, each param­
eterised by a set of state transition probabilities, {a~j}' and observation likelihood 
functions {b~ ('" H, where a~j is the probability that in model k state i will be fol­
lowed by state j, and b~ ( "') is the likelihood of model k emi tting observation '" from 
state j. For simplicity we insist that the end of the word pattern corresponds to 
state N of a model. 

The likelihood, Lie (lett) of model k generating a given sequence ",tt ~ "'1, •• " "'M 

is a sum, over all sequences of states, of the joint likelihood of that state sequence 
and the data: 

M 

LIe(ler) = L IT a!'_I"f b!I("'d with 8M = N. 
'I ... IM t=2 

This can be r.omput.ed efficiently via the forward recursion [3J 

glvlllg 

which we can think of as a recurrent network. (Note that t is used as a time index 
here.) 

If the observation sequence "':'" could only have come from one of a set of known, 
equally likely models, then the posterior probability that it was from model k is 

p(r=k I ",f!) = QIe(",f!) = Llc(",f1 ) / L Lr(",r)· 
r 

These numbers are the output of our special "recurrent neural network" for isolated 
word discrimination, which we call an "Alphanet" [14J. Backpropagation of partial 
derivatives of the J score has the form of the backward recurrence used in the 
Baum-Welch algorithm, but they include discriminative terms, and we obtain the 
gradient of the relative entropy/mutual information. 

6 CONCLUSIONS 

Discrimination-based training is different from within-class parameter estimation, 
and it may be useful. (Also see [15].) Discrimination-based training for stochastic 
models and for networks are not distinct, and in some cases can be mathematically 
identical. 

The notion of specially constructed 'network' architectures which implement stochas­
tic model recognition algorithms provides a way to construct fertile hybrids. For 
instance, a Gaussian classifier (or a HMM classifier) can be preceeded by a nonlin­
ear transformation (perhaps based on semilinear logistics) and all the parameters 
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of the system adjusted together. This seems a useful approach to automating the 
discovery of 'feature detectors'. 
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