
178 Lang and Hinton 

Dimensionality Reduction and Prior Knowledge in 
E-set Recognition 

Kevin J. Lang1 Geoffrey E. Hinton 
Computer Science Dept. Computer Science Dept. 

Carnegie Mellon University 
Pittsburgh, PA 15213 

University of Toronto 
Toronto, Ontario M5S lA4 

Canada USA 

ABSTRACT 

It is well known that when an automatic learning algorithm is applied 
to a fixed corpus of data, the size of the corpus places an upper bound 
on the number of degrees of freedom that the model can contain if 
it is to generalize well. Because the amount of hardware in a neural 
network typically increases with the dimensionality of its inputs, it 
can be challenging to build a high-performance network for classifying 
large input patterns. In this paper, several techniques for addressing this 
problem are discussed in the context of an isolated word recognition 
task. 

1 Introduction 

The domain for our research was a speech recognition task that requires distinctions to be 
learned between recordings of four highl y confusable words: the names of the letters "B", 
"D", "E", and "V". The task was created at IBM's T. J. Watson Research Center, and is 
difficult because many speakers were included and also because the recordings were made 
under noisy office conditions using a remote microphone. One hundred male speakers 
said each of the 4 words twice, once for training and again for testing. The words were 
spoken in isolation, and the recordings averaged 1.1 seconds in length. The signal-to­
noise ratio of the data set has been estimated to be about 15 decibels, as compared to 

1 Now at NEC Research Institute, 4 Independence Way, Princeton, NJ 08540. 
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50 decibels for typical lip-mike recordings (Brown, 1987). The key feature of the data 
set from our point of view is that each utterance contains a tiny information-laden event 
- the release of the consonant - which can easily be overpowered by meaningless 
variation in the strong "E" vowel and by background noise. 

Our first step in processing these recordings was to convert them into spectrograms using 
a standard DFI' program. The spectrograms encoded the energy in 128 frequency bands 
(ranging up to 8 kHz) at 3 msec intervals, and so they contained an average of about 
45,000 energy values. Thus, a naive back-propagation network which devoted a separate 
weight to each of these input components would contain far too many weights to be 
properly constrained by the task's 400 training patterns. 

As described in the next section, we drastically reduced the dimensionality of our training 
patterns by decreasing their resolution in both frequency and time and also by using a 
segmentation algorithm to extract the most relevant portion of each pattern. However, our 
network still contained too many weights, and many of them were devoted to detecting 
spurious features. This situation motivated the experiments with our network's objective 
function and architecture that will be described in sections 3 and 4. 

2 Reducing the Dimensionality of the Input Patterns 

Because it would have been futile to feed our gigantic raw spectrograms into a back­
propagation network, we first decreased the time resolution of our input format by a factor 
of 4 and the frequency resolution of the format by a factor 8. While our compression 
along the time axis preserved the linearity of the scale, we combined different numbers 
of raw freqencies into the various frequency bands to create a mel scale, which is linear 
up to 2 kHz and logarithmic above that, and thus provides more resolution in the more 
informative lower frequency bands. 

Next, a segmentation heuristic was used to locate the consonant in each training pattern 
so that the rest of the pattern could be discarded. On average, all but 1/7 of each 
recording was thrown away, but we would have liked to have discarded more. The 
useful information in a word from the E-set is concentrated in a roughly 50 msec region 
around the consonant release in the word, but current segmentation algorithms aren't 
good enough to accurately position a 50 msec window on that region. To prevent the 
loss of potentially useful information, we extracted a 150 msec window from around each 
consonant release. This safeguard meant that our networks contained about 3 times as 
many weights as would be required with an ideal segmentation. 

We were also concerned that segmentation errors during recognition could lower our 
final system's performance, so we adopted a simple segmentation-free testing method in 
which the trained network is scanned over the full-length version of each testing utterance. 
Figures 3(a) and 3(b) show the activation traces generated by two different networks when 
scanned over four sample utterances. To the right of each of the capital letters which 
identifies a particular sample word is a set of 4 wiggly lines that should be viewed as 
the output of a 4-channel chart recorder which is connected to the network's four output 
units. Our recognition rule for unsegmented utterances states that the output unit which 
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(a) (b) (c) (d) 
Figure 1: Output Unit Weights from Four Different 2-layer BDEV Networks: (a) base­
line, (b) smoothed, (c) decayed, (d) TDNN 

generates the largest activation spike (and hence the highest peak in the chart recorder's 
traces) on a given utterance determines the network's classification of that utterance.2 

To establish a performance baseline for the experiments that will be described in the next 
two sections, we trained the simple 2-layer network of figure 2(a) until it had learned to 
correctly identify 94 percent of our training segments.3 

This network contains 4 output units (one for each word) but no hidden units.4 The 
weights that this network used to recognize the words B and D are shown in figure l(a). 
While these weight patterns are quite noisy, people who know how to read spectrograms 
can see sensible feature detectors amidst the clutter. For example, both of the units appear 
to be stimulated by an energy burst near the 9th time frame. However, the units expect 
to see this energy at different frequencies because the tongue position is different in the 
consonants that the two units represent. 

Unfortunately, our baseline network's weights also contain many details that don't make 

ZOne can't reasonably expect a network that has been trained on pre-segmented patterns to function well 
when tested in this way, but our best network (a 3-layer TDN1'-I,) actually does perform better in this mode 
than when trained and tested on segments selected by a Viterbi alignment with an IBM hidden Markov model. 
Moreover, because the Viterbi alignment procedure is told the identity of the words in advance, it is probably 
more accurate than any method that could be used in a real recognition system. 

3This rather arbitrary halting rule for the learning procedure was uniformly employed during the experiments 
of sections 2, 3 and 4. 

4Experiments performed with multi-layer networks support the same general conclusions as the results 
reported here. 
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any sense to speech recognition experts. These spurious features are artifacts of our 
small, noisy training set, and are partially to blame for the very poor perfonnance of 
the network; it achieved only 37 percent recognition accuracy when scanned across the 
unsegmented testing utterances. 

3 Limiting the Complexity of a Network using a Cost Function 

Our baseline network perfonned poorly because it had lots of free parameters with which 
it could model spurious features of the training set. However, we had already taken our 
brute force techniques for input dimensionality reduction (pre-segmenting the utterances 
and reducing the resolution of input format) about as far as possible while still retaining 
most of the useful infonnation in the patterns. Therefore it was necessary to resort to 
a more subtle fonn of dimensionality reduction in which the back-propagation learning 
algorithm is allowed to create complicated weight patterns only to the extent that they 
actually reduce the network's error. 

This constraint is implemented by including a cost term for the network's complexity in 
its objective function. The particular cost function that should be used is induced by a 
particular definition of what constitutes a complicated weight pattern, and this definition 
should be chosen with care. For example, the rash of tiny details in figure l(a) originally 
led us to penalize weights that were different from their neighbors, thus encouraging the 
network to develop smooth, low-resolution weight patterns whenever possible. 

1 "" 1 "" 2 C = 2 ~ IINiII ~(Wi - Wj) 
, JEM 

(1) 

To compute the total tax on non-smoothness, each weight Wi was compared to all of its 
neighbors (which are indexed by the set Ali). When a weight differed from a neighbor, 
a penalty was assessed that was proportional to the square of their difference. The tenn 
IlNiIl- 1 normalized for the fact that units at the edge of a receptive field have fewer 
neighbors than units in the middle. 

When a cost function is used, a tradeoff factor'x is typically used to control the relative 
importance of the error and cost components of the overall objective function 0 = E+'xC. 
The gradient of the overall objective function is then 'V 0 = 'V E + ,X 'V C. To compute 
'V C, we needed the derivative of our cost function with respect to each weight Wi. This 
derivative is just the difference between the weight and the average of its neighbors: 
g~ = Wi - ukn" LjEM Wj, so minimizing the combined objective function was equivalent 
to minimizmg the network's error while simultaneously smoothing the weight patterns 
by decaying each weight towards the average of its neighbors. 

Figure 1 (b) shows the B and D weight patterns of a 2-layer network that was trained 
under the influence of this cost function. As we had hoped, sharp transitions between 
neighboring weights occurred primarily in the maximally infonnative consonant release 
of each word, while the spurious details that had plagued our baseline network were 
smoothed out of existence. However, this network was even worse at the task of gener­
alizing to unsegmented test cases than the baseline network, getting only 35 percent of 
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them correct 

While equation 1 might be a good cost function for some other task, it doesn't capture 
our prior knowledge that the discrimination cues in E-set recognition are highly localized 
in time. This cost function tells the network to treat unimportant neighboring input 
components similarly, but we really want to tell the network to ignore these components 
altogether. Therefore, a better cost function for this task is the one associated with 
standard weight decay: 

c= ~~w? 
2 L...J ' 

j 

(2) 

Equation 2 causes weights to remain close to zero unless they are particularly valuable 
for reducing the network's error on the training set. Unfortunately, the weights that our 
network learns under the influence of this function merely look like smaller versions of 
the baseline weights of figure l(a) and perform just as poorly. No matter what value is 
used for .x, there is very little size differentiation between the weights that we know to 
be valuable for this task and the weights that we know to be spurious. Weight decay 
fails because our training set is so small that spurious weights do not appear to be as 
irrelevant as they really are for performing the task in general. Fortunately, there is a 
modified form of weight decay (Scalettar and Zee, 1988) that expresses the idea that the 
disparity between relevant and irrelevant weights is greater than can be deduced from the 
training set: 

c=.!.l: wf 
2 . 2.5 +wr 

I 

(3) 

The weights of figure l(c) were learned under the influence of equation 3.5 In these pat­
terns, the feature detectors that make sense to speech recognition experts stand out clearly 
above a highly suppressed field of less important weights. This network generalizes to 
48 percent of the unsegmented test cases, while our earlier networks had managed only 
37 percent accuracy. 

4 A Time-Delay Neural Network 

The preceding experiments with cost functions show that controlling attention (rather 
than resolution) is the key to good performance on the BDEV task. The only way to 
accurately classify the utterances in this task is to focus on the tiny discrimination cues 
in the spectrograms while ignoring the remaining material in the patterns. 

Because we know that the BDEV discrimination cues are highly localized in time, it 
would make sense to build a network whose architecture reflected that knowledge. One 
such network (see figure 2(b» contains many copies of each output unit. These copies 
apply identical weight patterns to the input in all possible positions. The activation values 

sWe trained with >. = 100 here as opposed to the setting of >. = 10 that worked best with standard weight 
decay. 
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Figure 2: Conventional and Time-Delay 2-layer Networks 

from all of the copies of a given output unit are summed to generate the overall output 
value for that unit 6 

Now, assuming that the learning algorithm can construct weight patterns which recognize 
the characteristic features of each word while rejecting the rest of the material in the 
words, then when an instance of a particular word is shown to the network, the only unit 
that will be activated is the output unit copy for that word which happens to be aligned 
with the recognition cues in the pattern. Then, the summation step at the output stage of 
the network serves as an OR gate which transmits that activation to the outside world. 

This network architecture, which has been named the "Time-Delay Neural Network" 
or "TDNN", has several useful properties for E-set recognition, all of which are con­
sequences of the fact that the network essentially performs its own segmentation by 
recognizing the most relevant portion of each input and rejecting the rest. One ben­
efit is that sharp weight patterns can be learned even when the training patterns have 
been sloppily segmented. For example, in the TDNN weight patterns of figure l(d), the 
release-burst detectors are localized in a single time frame, while in the earlier weight 
patterns from conventional networks they were smeared over several time frames. 

Also, the network learns to actively discriminate between the relevant and irrelevant 
portions of its training segments, rather than trying to ignore the latter by using small 
weights. This turns out to be a big advantage when the network is later scanned across 
unsegmented utterances, as evidenced by the vastly different appearances of the output 

6We actually designed this network before performing our experiments with cost functions, and were orig­
inally attracted by its translation invariance rather than by the advantages mentioned here (Lang, 1987). 



v 

E 

D 

B 

184 Lang and Hinton 

v 
e 

f 

-
...... v 

e 
'-------' ,---d 

~----------------------b 

v 
d 
b 

E ~ 
v ,..-.,.. e 
d 
b 

V -~ 
r-r'O..r-__ e 

1----'"'"--'---d 
~------------------~-b 

D r -
v 

"\ 
e 
d 
b 

v 
e 

'----d 
B -

v 
e 
d 

t'-----J '----------b J \ b 

o 250msec 
(a) 

500 o 
I 

250msec 
(b) 

Figure 3: Output Unit Activation Traces of a Conventional Network and a Time-Delay 
Network, on Four Sample Utterances 

activity traces in figures 3(a) and 3(b)? 

Finally, because the IDNN can locate and attend to the most relevant portion of its 
input, we are able to make its receptive fields very narrow, thus reducing the number of 
free parameters in the network and making it highly trainable with the small number of 
uaining cases that are available in this task. In fact, the scanning mode generalization rate 
of our 2-layer TDNN is 65 percent, which is nearly twice the accuracy of our baseline 
2-layer network. 

5 Comparison with other systems 

The 2-layer networks described up to this point were uained and tested under identical 
conditions so that their perfonnances could be meaningfully compared. No attempt was 
made to achieve really high perfonnance in these experiments. On the other hand when 

'While the main text of this paper compares the perfonnance of a sequence of 2-1ayer networks, the plots of 
figure 3 show the output traces of 3-layer versions of the networks. The correct plots could not be conveniently 
generated because our eMU Common Lisp program for creating them has died of bit rot. 

I 

500 
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we trained a 3-layer TDNN using the slightly fancier methodology described in (Lang, 
Hinton, and Waibel, 1990),8 we obtained a system that generalized to about 91 percent of 
the unsegmented test cases. By comparison, the standard, large-vocabulary IBM hidden 
Markov model accounts for 80 percent of the test cases, and the accuracy of human 
listeners has been measured at 94 percent. In fact, the TDNN is probably the best 
automatic recognition system built for this task to date; it even performs slightly better 
than the continuous acoustic parameter, maximum mutual information hidden Markov 
model proposed in (Brown, 1987). 

6 Conclusion 
The performance of a neural network can be improved by building a priori knowledge 
into the network's architecture and objective function. In this paper, we have exhibited 
two successful examples of this technique in the context of a speech recognition task 
where the crucial information for making an output decision is highly localized and 
where the number of training cases is limited. Tony Zee's modified version of weight 
decay and our time-delay architecture both yielded networks that focused their attention 
on the short-duration discrimination cues in the utterances. Conversely, our attempts to 
use weight smoothing and standard weight decay during training got us nowhere because 
these cost functions didn't accurately express our knowledge about the task. 
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