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We demonstrate the ability of a two-layer network of thresholded 
summation units to support representation of 3D objects in which 
several distinct 2D views are stored for ea.ch object. Using unsu­
pervised Hebbian relaxation, the network learned to recognize ten 
objects from different viewpoints. The training process led to the 
emergence of compact representations of the specific input views. 
When tested on novel views of the same objects, the network ex­
hibited a substantial generalization capability. In simulated psy­
chophysical experiments, the network's behavior was qualitatively 
similar to that of human subjects. 

1 Background 

Model-based object recognition involves, by definition, a compa.rison between the 
input image and models of different objects that are internal to the recognition 
system. The form in which these models are best stored depends on the kind of 
information available in the input, and on the trade-off between the amount of 
memory allocated for the storage and the degree of sophistication required of the 
recognition process. 

In computer vision, a distinction can be made between representation schemes that 
use 3D object-centered coordinate systems and schemes that store viewpoint-specific 
information such as 2D views of objects. In principle, storing enough 2D views would 
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allow the system to use simple recognition techniques such as template matching. 
If only a few views of each object are remembered, the system must have the capa­
bility to normalize the appearance of an input object, by carrying out appropriate 
geometrical transformations, before it can be directly compared to the stored rep­
resen tat ions . 

What representation strategy is employed by the human visual system? The notion 
that objects are represented in viewpoint-dependent fashion is supported by the 
finding that commonplace objects are more readily recognized from certain so-called 
canonical vantage points than from other, random viewpoints (Palmer et al. 1981). 
Namely, canonical views are identified more quickly (and more accurately) than 
others, with response times decreasing monotonically with increasing subjective 
goodness.! 

The monotonic increase in the recognition latency with misorientation of the object 
relative to a canonical view prompts the interpretation of the recognition process in 
terms of a mechanism related to mental rotation. In the classical mental rotation 
task (see Shepard & Cooper 1982), the subject is required to decide whether two 
simultaneously presented images are two views of the same 3D object. The average 
latency of correct response in this task is linearly dependent on the difference in 
the 3D attitude of the object in the two images. This dependence is commonly 
accounted for by postulating a process that attempts to rotate the 3D shapes per­
ceived in the two images into congruence before making the identity decision. The 
rotation process is sometimes claimed to be analog, in the sense that the represen­
tation of the object appears to pass through intermediate orientation stages as the 
rotation progresses (Shepard & Cooper 1982). 

Psychological findings seem to support the involvement of some kind of mental 
rotation in recognition by demonstrating the dependence of recognition latency for 
an unfamiliar view of an object on the distance to its closest familiar view. There 
is, however, an important qualification. Practice with specific objects appears to 
cause this strategy to be abandoned in favor of a more memory-intensive, less time­
consuming direct comparison strategy. Under direct comparison, many views of the 
objects are stored and recognition proceeds in essentially constant time, provided 
that the presented views are sufficiently close to one of the stored views (Tarr & 
Pinker 1989, Edelman et al. 1989). 

From the preceding outline, it appears that a faithful model of object representa­
tion in the human visual system should provide both for the ability to "rotate" 
3D objects and for the fast direct-comparison strategy that supersedes mental ro­
tation for highly familiar objects. Surprisingly, it turns out that mental rotation 
in recognition can be replicated by a self-organizing memory-intensive model based 
on direct comparison. The rest of the present paper describes such a model, called 
CLF (conjunctions of localized features; see Edelman & Weins hall 1989). 

1 Canonical viewl of objects can be reliably identified in lubjective judgement al well as in 
recognition talb. For example, when alked to form a mental image of an object, people Ulually 
imagine it as leen &om a canonical perspective. 
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Figure 1: The network consists of two layers, F (input, or feature, layer) and 
R (representation layer). Only a small part of the projections from F to Rare 
shown. The network encodes input patterns by making units in the R-Iayer respond 
selectively to conjunctions of features localized in the F-Iayer. The curve connecting 
the representations of the different views of the same object in R-Iayer symbolizes 
the association that builds up between these views as a result of practice. 

2 The model 

The structure of the model appears in Figur~ 1 (see Edelman &; Weins hall 1989 for 
details). The first (input, or feature) layer of the network is a feature map. In our 
experiments, vertices of wire-frame objects served as the input features. Every unit 
in the (feature) F-Iayer is connected to all units in the second (representation) R­
layer. The initial strength of a "vertical" (V) connection between an F-unit and an 
R-unit decreases monotonically with the "horizontal" distance between the units, 
according to an inverse square law (which may be considered the first approximation 
to a Gaussian distribution). In our simulations the size of the F-layer was 64 x 64 
units and the size of the R-Iayer - 16 x 16 units. Let (z,1I) be the coordinates of an 
F-unit and (i, j) - the coordinates of an R-unit. The initial weight between these 
two units is w"'rijlt=o = (0'[1 + (z - 4i)2 + (11- 4j)2])-1, where 0' = 50 and (4i,4j) 
is the point in the F-Iayer that is directly "above" the R-unit (i, j). 

The R-units in the representation layer are connected among themselves by lateral 
(L) connections, whose initial strength is zero. Whereas the V-connections form the 
representations ofindividual views of an object, the L-connections form associations 
among different views of the same object. 

2.1 Operation 

During training, the input to the model is a sequence of appearances of an object, 
encoded by the 2D locations of concrete sensory features (vertices) rather than a lis t 
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of abstract features. At the first presentation of a stimulus several representation 
units are active, all with different strengths (due to the initial distribution of vertical 
connection strengths). 

2.1.1 Winner Take All 

We employ a simple winner-take-all (WTA) mechanism to identify for each view 
of the input object a few most active R-units, which subsequently are recruited to 
represent that view. The WTA mechanism works as follows. The net activities 
of the R-units are uniformly thresholded. Initially, the threshold is high enough to 
ensure that all activity in the R-Iayer is suppressed. The threshold is then gradually 
decreased, by a fixed (multiplicative) amount, until some activity appears in the 
R-layer. If the decrease rate of the threshold is slow enough, only a few units will 
remain active at the end of the WTA process. In our implementation, the decrease 
rate was 0.95. In most cases, only one winner emerged. 

Note that although the WTA can be obtained by a simple computation, we prefer 
the stepwise algorithm above because it has a natural interpretation in biological 
terms. Such an interpretation requires postulating two mechanisms that operate in 
parallel. The first mechanism, which looks at the activity of the R-Iayer, may be 
thought as a high fan-in OR gate. The second mechanism, which performs uniform 
adjustable thresholding on all the R-units, is similar to a global bias. Together, they 
resemble feedback-regulated global arousal networks that are thought to be present, 
e.g., in the medulla and in the limbic system of the brain (Kandel & Schwartz 1985).2 

2.1.2 Adjustment of weights and thresholds 

In the next stage, two changes of weights and thresholds occur that make the 
currently active R-units (the winners of the WTA stage) selectively responsive to 
the present view of the input object. First, there is an enhancement of the V­
connections from the active (input) F-units to the active R-units (the winners). 
At the same time, the thresholds of the active R-units are raised, so that at the 
presentation of a different input these units will be less likely to respond and to be 
recruited anew. We employ Hebbian relaxation to enhance the V-connections from 
the input layer to the active R-unit (or units). The connection strength tid from 
F-unit a to R-unit b = (i, j) changes by 

(1) 

where Aii is the activation of the R-unit (i, j) after WTA, tim,,!!: is an upper bound 
on a connection strength and a is a parameter controlling the rate of convergence. 
The threshold of a winner R-unit is increased by 

:3 The relationship of this approach to other WTA algoritluns is discussed in Edehnan It: Wein­
.hall1989. 
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(2) 

where 6 < 1. This rule keeps the thresholded activity level of the unit growing 
while the unit becomes more input specific. As a result, the unit encodes the 
spatial structure of a specific view, responding selectively to that view after only a 
few (two or three) presentations. 

2.1.3 Between-views association 

The principle by which specific views of the same object are grouped is that of 
temporal association. New views of the object appear in a natural order, corre­
sponding to their succession during an arbitrary rotation of the object. The lateral 
(L) connections in the representation layer are modified by a time-delay Hebbian re­
laxation. L-connection Wbc between R-units b = (i,i) and e = (I, m) that represent 
successive views is enhanced in proportion to the closeness of their peak activations 
in time, up to a certain time difference K: 

(3) 

The strength of the association between two views is made proportional to a co­
efficient, AM(b, e), that measures the strength of the apparent motion effect that 
would ensue if the two views were presented in succession to a human subject (see 
Edelman & WeinshallI989). 

2.1.4 Multiple-view representation 

The appearance of a new object is explicitly signalled to the network, so that two 
different objects do not become associated by this mechanism. The parameter -r1c 
decreases with Ikl so that the association is stronger for units whose activation is 
closer in time. In this manner, a footprint of temporally associated view-specific rep­
resentations is formed in the second layer for each object. Together, the view-specific 
representations form a distributed multiple-view representation of the object. 

3 Testing the model 

We have subjected the eLF network to simulated experiments, modeled after the 
experiments of (Edelman et al. 1989). Some of the results of the real and simulated 
experiments appear in Figures 2 and 3. In the experiments, each of ten novel 3D 
wire-frame objects served in turn as target. The task was to distinguish between 
the target and the other nine, non-target, objects. The network was first trained 
on a set of projections of the target's vertices from 16 evenly spaced viewpoints. 
After learning the target using Hebbian relaxation as described above, the network 
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Figure 3: Another comparison of human performance (left panel) with that of the 
CLF model (right panel). Define the best view for each object as the view with the 
shortest RT (highest CORR). If recognition involves rotation to the best (canonical) 
view, RT or CORR should depend monotonically on D = D(ta.,.get, view). the 
distance between the best view and the actually shown view. (The decrease in RT 
or CORR at D = 1800 is due to the fact that for the wire-frame objects used in the 
experiments the view diametrically opposite the best one is also easily recognized.) 
For both human subjects and the model, the dependence is clear for the first session 
of the experiment (upper curves), but disappears with practice (second session -
lower curves). 

We note that blurring the input prior to its application to the F-Iayer can signif­
icantly extend the generalization ability of the eLF model. Performing autoasso­
ciation on a dot pattern blurred with a Gaussian is computationally equivalent to 
correlating the input with a set of templates, realized as Gaussian receptive fields. 
This, in turn, appears to be related to interpolation with Radial Basis Functions 
(Moody & Darken 1989, Poggio & Girosi 1989, Poggio & Edelman 1989). 

4 Summary 

We have described a two-layer network ofthresholded summation units which is ca­
pable of developing multiple-view representations of 3D objects in an unsupervised 
fashion, using fast Hebbian learning. Using this network to model the performance 
of human subjects on similar stimuli, we replicated psychophysical experiments that 
investigated the phenomena of canonical views and mental rotation. The model's 
performance closely parallels that of the human subjects, even though the network 
has no a priori mechanism for "rotating" object representations. In the model, a 
semblance of rotation is created by progressive activation of object footprints (chains 
of representation units created through association during training). Practice causes 
the footprints to lose their linear structure through the creation of secondary as­
sociation links between random representation units, leading to the disappearance 
of orientation effects. Our results may indicate that a different interpretation of 
findings that are usually taken to signify mental rotation is possible. The foot-
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Figure 2: Performance of five human subjects (left panel) and of the eLF model 
(right panel). The variation of the performance measure (for human subjects, re­
sponse time RTj for the model, correlation CORR between the input and a stored 
representation) over different views of an object serves as an estimate of the strength 
of the canonical views phenomenon. In both human subjects and the model, prac­
tice appears to reduce the strength of this phenomenon. 

was tested on a sequence of inputs, half of which consisted of familiar views of the 
target, and half of views of other, not necessarily familiar, objects. 

The presentation of an input to the F-Iayer activated units in the representation 
layer. The activation then spread to other R-units via the L-connections. After a 
fixed number of lateral activation cycles, we correlated the resulting pattern of ac­
tivity with footprints of objects learned so far. The object whose footprint yielded 
the highest correlation was recognized by definition. In the beginning of the test­
ing stage, this correlation, which served as an analog of response time,S exhibited 
strong dependence on object orientation, replicating the effect of mental rotation 
in recognition. During testing, successive activation of R-units through association 
strengthened the L-connection between them, leading to an obliteration of the linear 
structure of R-unit sequences responsible for mental rotation effects. 

3.1 Generalization to novel views 

The usefulness of a recognition scheme based on multiple-view representation de­
pends on its ability to classify correctly novel views of familiar objects. To assess 
the generalization ability of the CLF network, we have tested it on views obtained 
by rotating the objects away from learned views by as much as 23° (see Figure 4). 
The classification rate was better than chance for the entire range of rotation. For 
rotations of up to 4° it was close to perfect, decreasing to 30% at 23° (chance level 
was 10% because we have used ten objects). One may compare this result with 
the finding (Rock & DiVita 1987) that people have difficulties in recognizing or 
imagining wire-frame objects in a novel orientation that differs by more than 30° 
from a familiar one. 

3The justification tor this use ot correlation appear. in Edelman" Weinshall1989. 
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Figure 4: Performance of the network on novel orientations of familiar objects 
(mean of 10 objects, bars denote the variance). 

prints formed in the representation layer in our model provide a hint as to what the 
substrate upon which the mental rotation phenomena are based may look like. 
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