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1024 distributed-neuron synapses have been integrated in an active 
area of 6.1mm x 3.3mm using a 0.9p.m, double-metal, single-poly, 
n-well CMOS technology. The distributed-neuron synapses are ar­
ranged in blocks of 16, which we call '4 x 4 tiles'. Switch matrices 
are interleaved between each of these tiles to provide programma­
bility of interconnections. With a small area overhead (15 %), the 
1024 units of the network can be rearranged in various configura­
tions. Some of the possible configurations are, a 12-32-12 network, 
a 16-12-12-16 network, two 12-32 networks etc. (the numbers sep­
arated by dashes indicate the number of units per layer, including 
the input layer). Weights are stored in analog form on MaS ca­
pacitors. The synaptic weights are usable to a resolution of 1 % of 
their full scale value. The limitation arises due to charge injection 
from the access switch and charge leakage. Other parameters like 
gain and shape of nonlinearity are also programmable. 

Introduction 

A wide variety of ptoblems can be solved by using the neural network framework 
[1]. However each of these problems requires a different topology and weight set. 
At a much lower system level, the performance of the network can be improved 
by selecting suitable neuron gains and saturation levels. Hardware realizations of 
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neural networks provide a fast means of solving the problem. We have chosen 
analog circuits to implement neural networks because they provide high synapse 
density and high computational speed. In order to provide a general purpose hard­
ware for solving a wide variety of problems that can be mapped into the neural 
network framework, it is necessary to make the topology, weights and other neuro­
synaptic parameters programmable. Weight programmability has been extensively 
dealt in several implementations [2 - 9]. However features like programmable topol­
ogy, neuron gains and saturation levels have not been addressed extensively. We 
have designed, fabricated and tested an analog VLSI neural network in which the 
topology, weights and neuron gains and saturations levels are all programmable. 

Since the process of design, fabrication and testing is time-consuming and expensive, 
redesigning the hardware for each application is inefficient. Since the field of neural 
networks is still in its infancy, new solutions to problems are being searched for 
everyday. These involve modifying the topology [10] and finding the best weight 
set. In such an environment, a computational tool that is fully programmable is 
very desirable. 

The Concept of Reconfigurability 

We define reconfigurabilityas the ability to alter the topology (the number oflayers, 
number of neurons per layer , interconnections from layer to layer and interconnec­
tions within a layer) of the network. The topology of a network does not describe 
the value of each synaptic weight. It only specifies the presence or absence of a 
synapse between two neurons (However in the special case of binary weight (0,1), 
defining the topology specifies the weight). The ability to alter the synaptic weight 
can be defined as weight programmability. Figure 1 illustrates reconfigurability, 
whereas Figure 2 shows how the weight value is realized in our implementation. 
The Voltage Vw across the capacitor represents the synaptic weight. Altering this 
voltage makes weight programmability possible. 

Why is On-Chip Reconfigurability Important? 

Synapses, neurons and interconnections occupy real estate on a chip. Chip sizes 
are limited due to various factors like yield and cost. Hence only a limited number 
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Figure 2: Weight programmability 

of synapses can be integrated in a given chip area. Currently the most compact 
realizations (considering more than 6 bits of synaptic accuracy) permit us to inte­
grate only a few thousand synapses per cm2 • In such a situation every zero-valued 
(inactive) synapse represents wasted area, and decreases the computational ability 
per unit area of the chip. If a fixed topology network is used for different problems, 
it will be underutilized as long as some synapses are set to zero value. On the 
other hand, if the network is reconfigurable, the limited resources on-chip can be 
reallocated to build networks with different topologies more efficiently. For example 
the network with topology-2 of Figure 1 requires 30 synapses. If the network was 
reconfigurable, we could utilize these synapses to build a two-layer network with 15 
synapses in the first layer and 15 in the second layer. In a similar fashion we could 
also build the network with topology-3 which is a network with localized receptive 
fields. 

The Distributed-Neuron Concept 

In order to provide reconfigurability on-chip, we have developed a new cell called the 
distributed-neuron synapse [11]. In addition to making reconfiguration easy, it has 
other advantages like being modular hence making design easy, provides automatic 
gain scaling, avoids large current build-up at any point and makes possible a fault 
tolerant system. 

Figure 3 shows a lumped neuron with N synaptic inputs. We call it 'lumped' 
because, the circuit that provides the nonlinear function is lumped into one block. 
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Figure 3: A lumped neuron with N synaptic inputs 
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The synapses are assumed to be voltage-to-current (transconductor) cells, and the 
neuron is assumed to be a current-to-voltage cell. Summation is achieved through 
addition of the synapse output currents in the parallel connection. 

Figure 4 shows the equivalent distributed-neuron with N synaptic inputs. It is 
called 'distributed' because the circuit that functions as the neuron, is split into 'N' 
parts. One of these parts is integrated with each synapse. This new block ( that 
contains a a synapse and a fraction of the neuron) is called the 'distributed-neuron 
synapse'. Details of the distributed-neuron concept are described in [11]. It has to 
be noted that the splitting of the neuron to form the distributed-neuron synapse 
is done at the summation point where the computation is linear. Hence the two 
realizations of the neuron are computationally equivalent. However, the distributed­
neuron implementation offers a number of advantages, as is now explained . 
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Figure 4: A distributed-neuron with N synaptic inputs 

Modularity of the design 

As is obvious from Figure 4, the task of building a complete network involves de­
signing one single distributed-neuron synapse module and interconnecting several of 
them to form the whole system. Though at a circuit level, a fraction of the neuron 
has to be integrated with each synapse, the system level design is simplified due to 
the modularity. 

Automatic gain normalization 

In the distributed-neuron, each unit of the neuron serves as a load to the output 
of a synapse. As the number of synapses at the input of a neuron increases, the 
number of neuron elements also increases by the same number. The neuron output 
is given by: 

1 N 
Yj = f{ N L WijXi - 8j} 

i=1 

(1) 

Where Yj is the output of the ph neuron, Wij is the weight from the ith synaptic 
input Xi and 8j is the threshold, implemented by connecting in parallel an appro­
priate number of distributed-neuron synapses with fixed inputs. Assume for the 
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Figure 5: Switches used for reconfiguration in the distributed-neuron implemen­
tation. 

moment that all the inputs Xi are at a maximum possible value. Then it is easily 
seen that Yj is independent of N . This is the manifestation of the automatic gain 
normalization that is inherent to the idea of distributed-neuron synapses. 

Ease of reconfiguration 

In a distributed-neuron implementation, reconfiguration involves interconnecting a 
set of distributed-neuron synapse modules (Figure 5). A neuron of the right size 
gets formed when the outputs of the required number of synapses are connected. 
In a lumped neuron implementation, reconfiguration involves interconnecting a set 
of synapses with a set of neurons. This involves more wiring, switches and logic 
control blocks. 

A voiding large current build-up in the neuron 

In our implementation the synaptic outputs are currents. These currents are summed 
by Kirchoffs current law and sent to the neuron. Since the neuron is distributed, the 
total current is divided into N equal parts, where N is the number of distributed­
neuron synapses. One of these part flows through each unit of the distributed neuron 
as illustrated in Figure 4. This obviates the need for large current summation wires 
and avoids other problems associated with large currents at any single point. 

Fault tolerance 

On a VLSI chip defects are commonly seen. Some of these defects can short wires, 
hence corrupting the signals that are carried on them. Defects can also render some 
synapses and neurons defective. In our implementation, we have integrated switches 
in-between groups of distributed-neuron synapses (which we call 'tiles') to make the 
chip reconfigurable (Figure 6). This makes each tile of the chip externally testable. 
The defective sections of the chip can be isolated and the remaining synapses can 
thus be reconfigured into another topology as shown in Figure 6. 

Circuit Description of the Distributed-Neuron Synapse 

Figure 7 shows a distributed-neuron synapse constructed around a differential-input, 
differential-output transconductance multiplier. A weight converter is used to con-
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Figure 6: Improved fault tolerance in the distributed-neuron system 

Figure 1: The distributed-neuron synapse circuit 

vert the single-ended weight controlling voltage Vw into a set of differential currents 
that serve as the bias currents of the multiplier. The weight is stored on aMOS 
capacitor. 

The differential nature of the circuit offers several advantages like improved rejection 
of power supply noise and linearity of multiplication. Common-mode feedback is 
provided at the output of the synapse. An amplitude limiter that is operational 
only when the weighted sum exceeds a certain range serves as the distributed-neuron 
part. The saturation levels of the neuron can be programmed by adjusting VN1 and 
VN2 • Gains can be set by adjusting the bias current IB and/or a load (not shown). 
The measured synapse characteristics are shown in Figure 8 . 
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Figure 8: Measured characteristics of the distributed-neuron synapse 
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Figure 9: Organization of the distributed-neurons and switches on chip 
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Organization of the Chip 

Figure 9 shows how the distributed-neuron synapses are arranged on-chip. 16 
distributed-neuron synapses have been arranged in a 4 x 4 crossbar fashion to 
form a 4-input-4-output network. We call this a '4 x 4 tile'. Input and output 
wires are available on all four sides of the tile. This makes interconnections to adja­
cent blocks easy. Vertical and horizontal switch matrices are interleaved in-between 
the tiles to select one of the various possible modes of interconnections. These 
modes can be configured by setting the 4 bits of memory in each switch matrix. 
1024 distributed-neuron synapses have been integrated in an active area of 6.1mm 
x 3.3mm using a 0.9J.lm, double-metal, single-poly, n-well CMOS technology. 

The Weight Update/Refresh Scheme 

Weights are stored in analog form on a MOS capacitor. A semi-serial-parallel weight 
update scheme has been built. 8 pins of the chip are used to distribute the weights 
to the 1024 capacitors on the chip. Each pin can refresh 128 capacitors contained 
in a row of tiles. The capacitors in each tile-row are selected one at a time by a 
decoder. The maximum refresh speed depends on the time needed to charge up the 
weight storage capacitor and the parasitic capacitances. One complete refresh of all 
weights on the chip is possible in about 130 J.l seconds. However one could refresh 
at a much slower rate, the lower limit of which is decided by the charge leakage. For 
a 7-bit precision in the weight at room temperature, a refresh rate in the order of 
milliseconds should be adequate. Charge injection due to the parasitic capacitances 
has been kept low by using very small switches. In the first version of the chip, 
only the distributed-neuron synapses, the switches used for reconfiguration, and 
the topology memory have been integrated. Weights are stored outside the chip in 
digital form in a 1K x 8 RAM. The contents of the RAM are continuously read and 
converted into analog form using a bank of off-chip D/ A converters. An advantage 
of our scheme is that the forward-pass operation is not interrupted by the weight 
refresh mechanism. A fast weight update scheme of the type used here is very 
desirable while executing learning algorithms at a high speed. The complete block 
diagram of the weight refresh/update and testing scheme is shown in Figure 10. 

Configuration Examples 

In Figure 11 we show some of the network topologies that can be configured with 
the resources available on the chip. The left-hand side of the figure shows the 
actual wiring on the chip and the right-hand side shows the symbolic diagram of 
the network configuration. The darkened tiles have been used for implementing 
the thresholds. Several other topologies like feedback networks and networks with 
localized receptive fields can be configured with this chip. 

The complete system 

Figure 10 shows how the neural network chip fits into a complete system that is 
necessary for its use and testing. The 'Config-EPROM' stores the bit pattern corre-
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Figure 10: Block diagram of the system for reconfiguration, weight update/refresh 
and testing. 

sponding to the desired topology. This bit pattern is down-loaded into the memory 
cells of the switch matrices before the start of computation. Input vectors are read 
out from the 'Data memory' and converted into analog form by D/A converters. 
The outputs of the D/ A converters are further transformed into differential sig­
nals and then fed into the chip. The chip delivers differential outputs which are 
converted into digital form using an A/D converter and stored in a computer for 
further analysis. 

The delay in processing one layer with N inputs driving another layer with an 
equal number of inputs is typically 1J.lsec. Hence a 12-32-12 network should take 
about 6J.lsecs for one forward-pass operation. However external loads can slow down 
the computation considerably. This problem can be solved by increasing the bias 
currents or/and using pad buffers. Each block on the chip has been tested and has 
been found to function as expected. Tests of the complete chip in a variety of neural 
network configurations are being planned. 

Conclusions 

We have designed a reconfigurable array of 1024 distributed-neuron synapses that 
can be configured into several different types of neural networks. The distributed­
neuron concept that is integral to this chip offers advantages in terms of modularity 
and automatic gain normalization. The chip can be cascaded with several other 
chips of the same type to build larger systems. 
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