
758 Satyanarayana, Tsividis and Graf

A Reconfigurable Analog VLSI Neural Network

Chip

Srinagesh Satyanarayana and Yannis Tsividis
Department of Electrical Engineering

and
Center for Telecommunications Research

Columbia University, New York, NY 10027, USA

ABSTRACT

Hans Peter Graf
AT&T

Bell Laboratories
Holmdel, NJ 07733

USA

1024 distributed-neuron synapses have been integrated in an active
area of 6.1mm x 3.3mm using a 0.9p.m, double-metal, single-poly,
n-well CMOS technology. The distributed-neuron synapses are ar­
ranged in blocks of 16, which we call '4 x 4 tiles'. Switch matrices
are interleaved between each of these tiles to provide programma­
bility of interconnections. With a small area overhead (15 %), the
1024 units of the network can be rearranged in various configura­
tions. Some of the possible configurations are, a 12-32-12 network,
a 16-12-12-16 network, two 12-32 networks etc. (the numbers sep­
arated by dashes indicate the number of units per layer, including
the input layer). Weights are stored in analog form on MaS ca­
pacitors. The synaptic weights are usable to a resolution of 1 % of
their full scale value. The limitation arises due to charge injection
from the access switch and charge leakage. Other parameters like
gain and shape of nonlinearity are also programmable.

Introduction

A wide variety of ptoblems can be solved by using the neural network framework
[1]. However each of these problems requires a different topology and weight set.
At a much lower system level, the performance of the network can be improved
by selecting suitable neuron gains and saturation levels. Hardware realizations of

A Reconfigurable Analog VLSI Neural Network Chip 759

3 inputs

'hidcMn
NtUYOftS

, inputs

Figure 1: Reconfigurability

7 Inputs

neural networks provide a fast means of solving the problem. We have chosen
analog circuits to implement neural networks because they provide high synapse
density and high computational speed. In order to provide a general purpose hard­
ware for solving a wide variety of problems that can be mapped into the neural
network framework, it is necessary to make the topology, weights and other neuro­
synaptic parameters programmable. Weight programmability has been extensively
dealt in several implementations [2 - 9]. However features like programmable topol­
ogy, neuron gains and saturation levels have not been addressed extensively. We
have designed, fabricated and tested an analog VLSI neural network in which the
topology, weights and neuron gains and saturations levels are all programmable.

Since the process of design, fabrication and testing is time-consuming and expensive,
redesigning the hardware for each application is inefficient. Since the field of neural
networks is still in its infancy, new solutions to problems are being searched for
everyday. These involve modifying the topology [10] and finding the best weight
set. In such an environment, a computational tool that is fully programmable is
very desirable.

The Concept of Reconfigurability

We define reconfigurabilityas the ability to alter the topology (the number oflayers,
number of neurons per layer , interconnections from layer to layer and interconnec­
tions within a layer) of the network. The topology of a network does not describe
the value of each synaptic weight. It only specifies the presence or absence of a
synapse between two neurons (However in the special case of binary weight (0,1),
defining the topology specifies the weight). The ability to alter the synaptic weight
can be defined as weight programmability. Figure 1 illustrates reconfigurability,
whereas Figure 2 shows how the weight value is realized in our implementation.
The Voltage Vw across the capacitor represents the synaptic weight. Altering this
voltage makes weight programmability possible.

Why is On-Chip Reconfigurability Important?

Synapses, neurons and interconnections occupy real estate on a chip. Chip sizes
are limited due to various factors like yield and cost. Hence only a limited number

760 Satyanarayana, Tsividis and Graf

Figure 2: Weight programmability

of synapses can be integrated in a given chip area. Currently the most compact
realizations (considering more than 6 bits of synaptic accuracy) permit us to inte­
grate only a few thousand synapses per cm2 • In such a situation every zero-valued
(inactive) synapse represents wasted area, and decreases the computational ability
per unit area of the chip. If a fixed topology network is used for different problems,
it will be underutilized as long as some synapses are set to zero value. On the
other hand, if the network is reconfigurable, the limited resources on-chip can be
reallocated to build networks with different topologies more efficiently. For example
the network with topology-2 of Figure 1 requires 30 synapses. If the network was
reconfigurable, we could utilize these synapses to build a two-layer network with 15
synapses in the first layer and 15 in the second layer. In a similar fashion we could
also build the network with topology-3 which is a network with localized receptive
fields.

The Distributed-Neuron Concept

In order to provide reconfigurability on-chip, we have developed a new cell called the
distributed-neuron synapse [11]. In addition to making reconfiguration easy, it has
other advantages like being modular hence making design easy, provides automatic
gain scaling, avoids large current build-up at any point and makes possible a fault
tolerant system.

Figure 3 shows a lumped neuron with N synaptic inputs. We call it 'lumped'
because, the circuit that provides the nonlinear function is lumped into one block.

r;:::===+=;:::::==a:~:::: ::: :::: ::::::==::::;~r::: : Yout

)(

2
)(

3

• • • •
/ _+._.--1-.. _ ..

Figure 3: A lumped neuron with N synaptic inputs

A Recontigurable Analog VLSI Neural Network Chip 761

The synapses are assumed to be voltage-to-current (transconductor) cells, and the
neuron is assumed to be a current-to-voltage cell. Summation is achieved through
addition of the synapse output currents in the parallel connection.

Figure 4 shows the equivalent distributed-neuron with N synaptic inputs. It is
called 'distributed' because the circuit that functions as the neuron, is split into 'N'
parts. One of these parts is integrated with each synapse. This new block (that
contains a a synapse and a fraction of the neuron) is called the 'distributed-neuron
synapse'. Details of the distributed-neuron concept are described in [11]. It has to
be noted that the splitting of the neuron to form the distributed-neuron synapse
is done at the summation point where the computation is linear. Hence the two
realizations of the neuron are computationally equivalent. However, the distributed­
neuron implementation offers a number of advantages, as is now explained .

• • • •
+ _ -........ Yout -
"'-

Distribut.d
N.uron

x1
)()(Disiribui.d-n.uron)(

2 3 s~nllps. N

Figure 4: A distributed-neuron with N synaptic inputs

Modularity of the design

As is obvious from Figure 4, the task of building a complete network involves de­
signing one single distributed-neuron synapse module and interconnecting several of
them to form the whole system. Though at a circuit level, a fraction of the neuron
has to be integrated with each synapse, the system level design is simplified due to
the modularity.

Automatic gain normalization

In the distributed-neuron, each unit of the neuron serves as a load to the output
of a synapse. As the number of synapses at the input of a neuron increases, the
number of neuron elements also increases by the same number. The neuron output
is given by:

1 N
Yj = f{ N L WijXi - 8j}

i=1

(1)

Where Yj is the output of the ph neuron, Wij is the weight from the ith synaptic
input Xi and 8j is the threshold, implemented by connecting in parallel an appro­
priate number of distributed-neuron synapses with fixed inputs. Assume for the

762 Satyanarayana, Tsividis and Graf

Distri buted- neuron
synapse

Figure 5: Switches used for reconfiguration in the distributed-neuron implemen­
tation.

moment that all the inputs Xi are at a maximum possible value. Then it is easily
seen that Yj is independent of N . This is the manifestation of the automatic gain
normalization that is inherent to the idea of distributed-neuron synapses.

Ease of reconfiguration

In a distributed-neuron implementation, reconfiguration involves interconnecting a
set of distributed-neuron synapse modules (Figure 5). A neuron of the right size
gets formed when the outputs of the required number of synapses are connected.
In a lumped neuron implementation, reconfiguration involves interconnecting a set
of synapses with a set of neurons. This involves more wiring, switches and logic
control blocks.

A voiding large current build-up in the neuron

In our implementation the synaptic outputs are currents. These currents are summed
by Kirchoffs current law and sent to the neuron. Since the neuron is distributed, the
total current is divided into N equal parts, where N is the number of distributed­
neuron synapses. One of these part flows through each unit of the distributed neuron
as illustrated in Figure 4. This obviates the need for large current summation wires
and avoids other problems associated with large currents at any single point.

Fault tolerance

On a VLSI chip defects are commonly seen. Some of these defects can short wires,
hence corrupting the signals that are carried on them. Defects can also render some
synapses and neurons defective. In our implementation, we have integrated switches
in-between groups of distributed-neuron synapses (which we call 'tiles') to make the
chip reconfigurable (Figure 6). This makes each tile of the chip externally testable.
The defective sections of the chip can be isolated and the remaining synapses can
thus be reconfigured into another topology as shown in Figure 6.

Circuit Description of the Distributed-Neuron Synapse

Figure 7 shows a distributed-neuron synapse constructed around a differential-input,
differential-output transconductance multiplier. A weight converter is used to con-

A Reconfigurable Analog VLSI Neural Network Chip 763

Figure 6: Improved fault tolerance in the distributed-neuron system

Figure 1: The distributed-neuron synapse circuit

vert the single-ended weight controlling voltage Vw into a set of differential currents
that serve as the bias currents of the multiplier. The weight is stored on aMOS
capacitor.

The differential nature of the circuit offers several advantages like improved rejection
of power supply noise and linearity of multiplication. Common-mode feedback is
provided at the output of the synapse. An amplitude limiter that is operational
only when the weighted sum exceeds a certain range serves as the distributed-neuron
part. The saturation levels of the neuron can be programmed by adjusting VN1 and
VN2 • Gains can be set by adjusting the bias current IB and/or a load (not shown).
The measured synapse characteristics are shown in Figure 8 .

764 Satyanarayana, Tsividis and Graf

2.3V ---- --~-----.'
~

:::;J If · H H .. ~

.e
:::;J a
3 0
c:
~

..2!
0)t W :)III)111.- W II H M---jlf- - .

.-+' +-+-.+-.... ----. ;-~---
-2.3V '---_'-_ _ ----1-.-__ .1... ___ _ .1. _.-1. ___ . --1.-__ j _ _ -<--_~

-40JT\V 0 40mV
Difterential Input

- -- --------- .-------~

- wt = I [-\.0 FS\ --+- wt = 117 [-0.1 FS\ wt = 126 [-O.OIFS\
-M- wt = 137 [0.1 FS\ -+- wt = 255 [1.0 FS\

----.- - - - - -- ----- -- - ------- -- - -----

Individual curVElS are for different
\'eIght values. I FS - Full Scale I

Figure 8: Measured characteristics of the distributed-neuron synapse

Distributed-neuron synapse

output wlr~ :ial:a:ml:ttn::

ACTUAL ON-CHIP

WIRING OF A

4X4 TILE.

horizontal
swi tch matri x

L.!:::=:=====--+-+--J

SYMBOLIC
DIAGRAM

DODD
DODO
0000
DODO

DODD DODO
DODD DODO
DODO DODO
DODD DODO

1021 SYNAPSES

IN GROUPS OF 1)(..

Figure 9: Organization of the distributed-neurons and switches on chip

A Reconfigurable Analog VLSI Neural Network Chip 765

Organization of the Chip

Figure 9 shows how the distributed-neuron synapses are arranged on-chip. 16
distributed-neuron synapses have been arranged in a 4 x 4 crossbar fashion to
form a 4-input-4-output network. We call this a '4 x 4 tile'. Input and output
wires are available on all four sides of the tile. This makes interconnections to adja­
cent blocks easy. Vertical and horizontal switch matrices are interleaved in-between
the tiles to select one of the various possible modes of interconnections. These
modes can be configured by setting the 4 bits of memory in each switch matrix.
1024 distributed-neuron synapses have been integrated in an active area of 6.1mm
x 3.3mm using a 0.9J.lm, double-metal, single-poly, n-well CMOS technology.

The Weight Update/Refresh Scheme

Weights are stored in analog form on a MOS capacitor. A semi-serial-parallel weight
update scheme has been built. 8 pins of the chip are used to distribute the weights
to the 1024 capacitors on the chip. Each pin can refresh 128 capacitors contained
in a row of tiles. The capacitors in each tile-row are selected one at a time by a
decoder. The maximum refresh speed depends on the time needed to charge up the
weight storage capacitor and the parasitic capacitances. One complete refresh of all
weights on the chip is possible in about 130 J.l seconds. However one could refresh
at a much slower rate, the lower limit of which is decided by the charge leakage. For
a 7-bit precision in the weight at room temperature, a refresh rate in the order of
milliseconds should be adequate. Charge injection due to the parasitic capacitances
has been kept low by using very small switches. In the first version of the chip,
only the distributed-neuron synapses, the switches used for reconfiguration, and
the topology memory have been integrated. Weights are stored outside the chip in
digital form in a 1K x 8 RAM. The contents of the RAM are continuously read and
converted into analog form using a bank of off-chip D/ A converters. An advantage
of our scheme is that the forward-pass operation is not interrupted by the weight
refresh mechanism. A fast weight update scheme of the type used here is very
desirable while executing learning algorithms at a high speed. The complete block
diagram of the weight refresh/update and testing scheme is shown in Figure 10.

Configuration Examples

In Figure 11 we show some of the network topologies that can be configured with
the resources available on the chip. The left-hand side of the figure shows the
actual wiring on the chip and the right-hand side shows the symbolic diagram of
the network configuration. The darkened tiles have been used for implementing
the thresholds. Several other topologies like feedback networks and networks with
localized receptive fields can be configured with this chip.

The complete system

Figure 10 shows how the neural network chip fits into a complete system that is
necessary for its use and testing. The 'Config-EPROM' stores the bit pattern corre-

766 Satyanarayana, Tsividis and Graf

WeIght
RAn

SIngle-ended to dUferenltl1
conYerter

Neural
Networll:

Conflg:
EPRon

Figure 10: Block diagram of the system for reconfiguration, weight update/refresh
and testing.

sponding to the desired topology. This bit pattern is down-loaded into the memory
cells of the switch matrices before the start of computation. Input vectors are read
out from the 'Data memory' and converted into analog form by D/A converters.
The outputs of the D/ A converters are further transformed into differential sig­
nals and then fed into the chip. The chip delivers differential outputs which are
converted into digital form using an A/D converter and stored in a computer for
further analysis.

The delay in processing one layer with N inputs driving another layer with an
equal number of inputs is typically 1J.lsec. Hence a 12-32-12 network should take
about 6J.lsecs for one forward-pass operation. However external loads can slow down
the computation considerably. This problem can be solved by increasing the bias
currents or/and using pad buffers. Each block on the chip has been tested and has
been found to function as expected. Tests of the complete chip in a variety of neural
network configurations are being planned.

Conclusions

We have designed a reconfigurable array of 1024 distributed-neuron synapses that
can be configured into several different types of neural networks. The distributed­
neuron concept that is integral to this chip offers advantages in terms of modularity
and automatic gain normalization. The chip can be cascaded with several other
chips of the same type to build larger systems.

References

[1] Richard Lippmann. Pattern classification using neural networks. IEEE Com­
munications Magazine, 27(11):47-64, November 1989.

A Reconfigurable Analog VLSI Neural Network Chip 767

16 inputs

-I
16 outputs

12
outputs

12
Inputs

"'-4)(4
TILE

- I nput wi re - Output wi re

12 outputs

12 inputs

16 outputs

++++++++++++++
++++++++++

I I I I I I I I I I I I I I
16 inputs

Figure 11: Reconfiguring the network to produce two different topologies

768 Satyanarayana, Tsividis and Graf

[2] Y. Tsividis and S. Satyanarayana. Analogue circuits for variable-synapse elec­
tronic neural networks. Electronics Letters, 23(24):1313-1314, November 1987.

[3] Y. Tsividis and D. Anastassiou. Switched-capacitor neural networks. Electron­
ics Letters, 23(18):958-959, August 1987.

[4] Paul Mueller et al. A Programmable Analog Neural Computer and Simulator,
volume 1 of Advances in Neural Information Processing systems, pages 712-
719. Morgan Kaufmann Publishers, 1989.

[5] D. B. Schwartz, R. E. Howard, and W. E. Hubbard. Adaptive Neural Networks
Using MOS Charge Storage, volume 1 of Advances in Neural Information Pro­
cessing systems, pages 761-768. Morgan Kaufmann Publishers, 1989.

[6] J. R. Mann and S. Gilbert. An Analog Self-Organizing Neural Network Chip,
volume 1 of Advances in Neural Information Processing systems, pages 739-
747. Morgan Kaufmann Publishers, 1989.

[7] Mark Holler, Simon Tam, Hernan Castro, and Ronald Benson. An electrically
trainable artificial neural network etann with 10240 'floating gate' synapses. In
IJCNN International Joint Conference on Neural Networks, volume 2, pages
191-196. International Neural Network Society (INNS) and Institue of Electri­
cal and Electronic Engineers (IEEE), 1989.

[8] S. Eberhardt, T. Duong, and A. Thakoor. Design of parallel hardware neural
network systems from custom analog vlsi 'building block' chips. In IJCNN
International Joint Conference on Neural Networks, volume 2, pages 191-196.
International Neural Network Society (INNS) and Institue of Electrical and
Electronic Engineers (IEEE), 1989.

[9] F. J. Kub, 1. A. Mack, K. K. Moon, C. Yao, and J. Modola. Programmable
analog synapses for microelectronic neural networks using a hybrid digital­
analog approach. In IEEE International Conference on Neural Networks, San
Diego, 1988.

[10] Y. Le Cun et al. Handwritten digit recognition: Application of neural network
chips and automatic learning. IEEE Communications Magazine, 27(11):41-46,
November 1989.

[11] S. Satyanarayana, Y. Tsividis, and H. P. Graf. Analogue neural networks with
distributed neurons. Electronics Letters, 25(5) :302-304, March 1989.

