
226 Mann 

The Effects of Circuit Integration on a Feature 
Map Vector Quantizer 

Jim lVIann 
MIT Lincoln Laboratory 

244 Wood St. 
Lexington, ~IA 02173 

email: mann@vlsi.ll.mit.edu 

ABSTRACT 

The effects of parameter modifications imposed by hardware con­
straints on a self-organizing feature map algorithm were examined. 
Performance was measured by the error rate of a speech recogni­
tion system which included this algorithm as part of the front-end 
processing. System parameters which were varied included weight 
(connection strength) quantization, adap tation quantization, dis­
tance measures and circuit approximations which include device 
characteristics and process variability. Experiments using the TI 
isolated word database for 16 speakers demonstrated degradation in 
performance when weight quantization fell below 8 bits. The com­
petitive nature of the algorithm rela..xes constraints on uniformity 
and linearity which makes it an excellent candidate for a fully ana­
log circuit implementation. Prototype circuits have been fabricated 
and characterized following the constraints established through the 
simulation efforts. 

1 Introduction 

The self-organizing feature map algorithm developed by Kohonen [Kohonen, 1988] 
readily lends itself to the task of vector quantization for use in such areas as speech 
recognition. However, in considering practical imp lementations, it is necessary to 
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Figure 1: Recognition performance of the Euclidean and dot product activity 
calculators plotted as a function of weight precision . 

understand the limitations imposed by circuitry on algorithm performance. In order 
to test the effects of these constraints on overall performance a simulation was 
written which permits ready variation of critical system parameters. 

The feature map algorithm was placed in the frontend of a discrete hidden Ylarkov 
model (H111'I) speech recognition program as the vector quantizer (VQ) in order to 
track the effects of feature map algorithm modifications by monitoring overall word 
recognition accuracy. The system was tested on TI's 20 isolated word database 
consisting of 16 speakers . Each speaker had 1 training session consisting of 10 repe­
titions of each word in the vocabulary and 8 test sessions consisting of 2 repetitions 
of each word. 

The key parameters tested include; quantization of both the weight coefficients and 
learning rule, and several different activation computations, the dot product and 
the mean squared error (i.e. squared Euclidean distance), as well as the circuit 
approximations to these calculators. 

2 Results 

A unique dependency between weight quantization and distance measure emerged 
from the simulations and is illustrated in the graph presented in Figure 1. The 
network equipped with the mean squared error activity calculator shows a "knee" 
in the word error rate at 6 bits of precision in the weight representation. The overall 
performance dropped only slightly between the essentially ideal floating point case, 
at 1.45% error rate, and the 6 bit case, at 2.99% error rate. At 4 bits, the error rate 
climbs to 7.62%. This still corresponds to a recognition accuracy of better than 
92% but does show a marked degradation in performance. 
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Figure 2: .-\ circuit approximation to the dot product calculator. 

The dot product does not degrade as gracefully with reduced precision in the weight 
representation as the mean squared error activity calculation. This is due to the 
normalization required on the input, and subsequently the weight vectors, which 
compresses the space onto the unit hypersphere. This step is necessary because of 
the inherent sensitivity of this metric to vector magnitude in making decisions of 
relative distance. Here the" knee" in the error curve occurs at 8 bits. Below 8 bits, 
performance drops off dramatically, reaching 40.6% error rate at 6 bits. The double 
precision floating point case starts off at 1.68% and is 3.44% at 8 bits . 

Circuit approximations to these activity calculators were also included in the simu­
lations. An approximation to the dot product operation can be implemented with 
single transistors operating in the ohmic region at each connection as illustrated in 
Figure 2. 

These area. related considerations can often overshadow the performance penalties 
associated with their implementation. The simulation results from this circuit ap­
proximation match the performance of the digital calculation of the dot product 
almost exactly as seen in Figure 3. This indicates that the performance of the 
system depends more on the monotonicity of the product operation performed at 
each connection then its linearity. 

Effects of process variations on transistor thresholds were also examined. There 
appears to be a gradual decrease in system performance with increasing variability 
in transistor thresholds as seen in Figure 4. The cause of this phenomena remains 
to be investigated. 

A weight adjustment rule which simplifies circuitry consists of quantizing the learn­
ing rate gain term. An integer step is added to or subtracted from the weight 
depending on the magnitude of the difference between it and the input. In the 
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Figure 3: Similarity between the transistor circuit simulation and the digital cal­
culation of the dot product 
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Figure 4: The effects of transistor threshold variation on recognition performance. 
(8 bit weight; Gaussian distributed, mean(Vth) = 0.75 volts). 
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Figure 5: 'Nord recognition error rate as a function of learning rate gain quanti­
zation. 

simplest case . a fixed increment or decrement operation is performed based only 
upon the sign of the difference between the two terms. Even in this simplest case 
no degradation in performance was noted while using an 8 bit weight representa­
tion as demonstrated in the graph shown in Figure 5. In fact, performance was 
often improved over the original learning rule. The error rates using an incre­
ment/decrement learning rule with 8 weight bits was O.9i% and 2.0% for the mean 
squared error and the dot product, respectively. 

An additional learning rule is being tested, targeted at a floating gate implemen­
tation which uses a "flash" EPROM memory structure at each synapse. Weight 
changes are restricted to positive adjustments locally while all negative adjustments 
are made globally to all weights. This corresponds to a forgetting term, or constant 
weight decay, in the learning rule. This rule was chosen to be compatible with one 
technique in non-volatile charge storage which allows selective write but only block 
erase. 

3 Hardware 

A prototype synaptic array and weight adaptation circuit have been designed and 
fabricated [Mann, 1989]. A single transistor synapse computes its contribution to 
the dot product activity calculation. The weight is stored dynamically as charge on 
the gate of the synapse transistor. The input is represented as a voltage on the drain 
of the transistor. The current through the transistor is proportional to the product 
of the gate voltage (i.e. the weight) and the drain voltage (i.e. the input strength) 
with the source connected to a virtual ground (see Figure 2). The sources of several 
of these synapse connected together form the accumulation needed to realize the dot 
product. Circuitry for accessing stored weight information has also been included. 
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The synapse array works as expected except for circuitry used to read the weight 
contents. This circuit requires very high on-chip voltages causing other circuits to 
latch-up when the clocks are turned on . 

The weight adaptation circuit performs the simple increment/decrement operation 
based on the comparison between the input and weight magnitudes. Both quanti­
ties are first converted to a digital representation by a flash A/D converter before 
comparison. This circuit also performs the required refresh operation on weight. 
contents, much like that required for dynamic RAM's but requiring analog charge 
storage. This insures that weight drift is constrained to lie within boundaries defined 
by the precision of the weight representation determined by the A/D con version pro­
cess. This circuit was functional in the refresh and increment modes, but would not 
decrement correctly. 

Further tests are being conducted to establish the causes of the circuit problems 
detected thus far. Additional work is proceeding on a non-volatile charge storage 
version of this device. Some test structures have been fabricated and are currently 
being characterized for compatibility with this task. 

This work was supported by the Department of the Air Force. 
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