
524 Fablman and Lebiere 

The Cascade-Correlation Learning Architecture 

Scott E. Fahlman and Christian Lebiere 
School of Computer Science 
Carnegie-Mellon University 

Pittsburgh, PA 15213 

ABSTRACT 

Cascade-Correlation is a new architecture and supervised learning algo­
rithm for artificial neural networks. Instead of just adjusting the weights 
in a network of fixed topology. Cascade-Correlation begins with a min­
imal network, then automatically trains and adds new hidden units one 
by one, creating a multi-layer structure. Once a new hidden unit has 
been added to the network, its input-side weights are frozen. This unit 
then becomes a permanent feature-detector in the network, available for 
producing outputs or for creating other, more complex feature detec­
tors. The Cascade-Correlation architecture has several advantages over 
existing algorithms: it learns very quickly, the network . determines its 
own size and topology, it retains the structures it has built even if the 
training set changes, and it requires no back-propagation of error signals 
through the connections of the network. 

1 DESCRIPTION OF CASCADE·CORRELATION 

The most important problem preventing the widespread application of artificial neural 
networks to real-world problems is the slowness of existing learning algorithms such as 
back-propagation (or "backprop"). One factor contributing to that slowness is what we 
call the moving target problem: because all of the weights in the network are changing 
at once, each hidden units sees a constantly changing environment. Instead of moving 
quickly to assume useful roles in the overall problem solution, the hidden units engage in 
a complex dance with much wasted motion. The Cascade-Correlation learning algorithm 
was developed in an attempt to solve that problem. In the problems we have examined, 
it learns much faster than back-propagation and solves some other problems as well. 



The Cascade-Correlation Learning Architecture 525 

Hidden Unit 2 

Hidden unit 1 

Output Units 

Outputs 
o 0 

~~--------~~--.----

o--------~&_-------mr_--------------~----~--~~ 

Inpu~ O--------~~----~H-------------~.---~~--~ 
o--------~~------~--------------------------~ 

+1 

Figure 1: The Cascade architecture, after two hidden units have been added. The 
vertical lines sum all incoming activation. Boxed connections are frozen, X connections 
are trained repeatedly. 

Cascade-Correlation combines two key ideas: The first is the cascade architecture, in 
which hidden units are added to the network one at a time and do not change after they 
have been added. The second is the learning algorithm, which creates and installs the 
new hidden units. For each new hidden unit, we attempt to maximize the magnitude of 
the correlation between the new unit's output and the residual error signal we are trying 
to eliminate. 

The cascade architecture is illustrated in Figure 1. It begins with some inputs and one or 
more output units, but with no hidden units. The number of inputs and outputs is dictated 
by the problem and by the I/O representation the experimenter has chosen. Every input 
is connected to every output unit by a connection with an adjustable weight. There is 
also a bias input, permanently set to + 1. 

The output units may just produce a linear sum of their weighted inputs, or they may 
employ some non-linear activation function. In the experiments we have run so far, we 
use a symmetric sigmoidal activation function (hyperbolic tangent) whose output range 
is -1.0 to + 1.0. For problems in which a precise analog output is desired, instead of a 
binary classification, linear output units might be the best choice, but we have not yet 
studied any problems of this kind. 

We add hidden units to the network one by one. Each new hidden unit receives a 
connection from each of the network's original inputs and also from every pre-existing 
hidden unit. The hidden unit's input weights are frozen at the time the unit is added to 
the net; only the output connections are trained repeatedly. Each new unit therefore adds 



526 Fahlman and Lebiere 

a new one-unit "layer" to the network, unless some of its incoming weights happen to be 
zero. This leads to the creation of very powerful high-order feature detectors; it also may 
lead to very deep networks and high fan-in to the hidden units. There are a number of 
possible strategies for minimizing the network depth and fan-in as new units are added, 
but we have not yet explored these strategies. 

The learning algorithm begins with no hidden units. The direct input-output connections 
are trained as well as possible over the entire training set. With no need to back-propagate 
through hidden units, we can use the Widrow-Hoff or "delta" rule, the Perceptron learning 
algorithm, or any of the other well-known learning algorithms for single-layer networks. 
In our simulations, we use Fahlman's "quickprop" algorithm [Fahlman, 1988] to train the 
output weights. With no hidden units, this acts essentially like the delta rule, except that 
it converges much faster. 

At some point, this training will approach an asymptote. When no significant error 
reduction has occurred after a certain number of training cycles (controlled by a "patience" 
parameter set by the operator), we run the network one last time over the entire training 
set to measure the error. If we are satisfied with the network's performance, we stop; if 
not, we attempt to reduce the residual errors further by adding a new hidden unit to the 
network. The unit-creation algorithm is described below. The new unit is added to the 
net, its input weights are frozen, and all the output weights are once again trained using 
quickprop. This cycle repeats until the error is acceptably small (or until we give up). 

To create a new hidden unit, we begin with a candidate unit that receives trainable input 
connections from all of the network's external inputs and from all pre-existing hidden 
units. The output of this candidate unit is not yet connected to the active network. We run 
a number of passes over the examples of the training set, adjusting the candidate unit's 
input weights after each pass. The goal of this adjustment is to maximize S, the sum over 
all output units 0 of the magnitude of the correlation (or, more precisely, the covariance) 
between V, the candidate unit's value, and Eo, the residual output error observed at unit 
o. We define S as 

S = L: L:(Vp - V) (Ep,o - Eo) 
o p 

where 0 is the network output at which the error is measured and p is the training pattern. 
The quantities V and Eo are the values of V and Eo averaged over all patterns. 

In order to maximize S, we must compute 8Sj8wi, the partial derivative of S with 
respect to each of the candidate unit's incoming weights, Wi. In a manner very similar 
to the derivation of the back-propagation rule in [Rumelhart, 1986], we can expand and 
differentiate the fonnula for S to get 

8Sj8Wj = L: uo(Ep,o - Eo)J;,lj,p 
p,o 

where U o is the sign of the correlation between the candidate's value and output o,ff, is 



The Cascade-Correlation Learning Architecture 527 

the derivative for pattern p of the candidate unit's activation function with respect to the 
sum of its inputs, and li,p is the input the candidate unit receives from unit i for pattern 
p. 

After computing 8 S / 8Wi for each incoming connection, we can perform a gradient ascent 
to maximize S. Once again we are training only a single layer of weights. Once again 
we use the quickprop update rule for faster convergence. When S stops improving, we 
install the new candidate as a unit in the active network, freeze its input weights, and 
continue the cycle as described above. 

Because of the absolute value in the formula for S, a candidate unit cares only about the 
magnitude of its correlation with the error at a given output, and not about the sign of 
the correlation. As a rule, if a hidden unit correlates positively with the error at a given 
unit, it will develop a negative connection weight to that unit, attempting to cancel some 
of the error; if the correlation is negative, the output weight will be positive. Since a 
unit's weights to different outputs may be of mixed sign, a unit can sometimes serve two 
purposes by developing a positive correlation with the error at one output and a negative 
correlation with the error at another. 

Instead of a single candidate unit. it is possible to use a pool of candidate units, each 
with a different set of random initial weights. All receive the same input signals and see 
the same residual error for each pattern and each output. Because they do not interact 
with one another or affect the active network during training, all of these candidate units 
can be trained in parallel; whenever we decide that no further progress is being made, 
we install the candidate whose correlation score is the best. The use of this pool of 
candidates is beneficial in two ways: it greatly reduces the chance that a useless unit will 
be permanently installed because an individual candidate got stuck during training, and 
(on a parallel machine) it can speed up the training because many parts of weight-space 
can be explored simultaneously. 

The hidden and candidate units may all be of the same type, for example with a sigmoid 
activation function. Alternatively, we might create a pool of candidate units with a 
mixture of nonlinear activation functions-some sigmoid, some Gaussian, some with 
radial activation functions. and so on-and let them compete to be chosen for addition 
to the active network. To date, we have explored the all-sigmoid and all-Gaussian cases, 
but we do not yet have extensive simulation data on networks with mixed unit-types. 

One final note on the implementation of this algorithm: While the weights in the output 
layer are being trained, the other weights in the active network are frozen. While the 
candidate weights are being trained, none of the weights in the active network are changed. 
In a machine with plenty of memory. it is possible to record the unit-values and the output 
errors for an entire epoch, and then to use these cached values repeatedly during training. 
rather than recomputing them repeatedly for each training case. This can result in a 
tremendous speedup as the active network grows large. 



528 Fahlman and Lebiere 

Figure 2: Training points for the two-spirals problem, and output pattern for one network 
trained with Cascade-Correlation. 

2 BENCHMARK RESULTS 

2.1 THE TWO-SPIRALS PROBLEM 

The "two-spirals" benchmark was chosen as the primary benchmark for this study because 
it is an extremely hard problem for algorithms of the back-propagation family to solve. 
n was first proposed by Alexis Wieland of MImE Corp. The net has two continuous­
valued inputs and a single output. The training set consists of 194 X-Y values, half of 
which are to produce a + 1 output and half a -1 output. These training points are arranged 
in two interlocking spirals that go around the origin three times, as shown in Figure 2a. 
The goal is to develop a feed-forward network with sigmoid units that properly classifies 
all 194 training cases. Some hidden units are obviously needed, since a single linear 
separator cannot divide two sets twisted together in this way. 

Wieland (unpublished) reported that a modified version of backprop in use at MITRE 
required 150,000 to 200,000 epochs to solve this problem, and that they had never 
obtained a solution using standard backprop. Lang and Witbrock [Lang, 1988] tried the 
problem using a 2-5-5-5-1 network (three hidden layers of five units each). Their network 
was unusual in that it provided "shortcut" connections: each unit received incoming 
connections from every unit in every earlier layer, not just from the immediately preceding 
layer. With this architecture, standard backprop was able to solve the problem in 20,000 
epochs, backprop with a modified error function required 12,000 epochs, and quickprop 
required 8000. This was the best two-spirals performance reported to date. Lang and 
Witbrock also report obtaining a solution with a 2-5-5-1 net (only ten hidden units in 
all), but the solution required 60,000 quickprop epochs. 

We ran the problem 100 times with the Cascade-Correlation algorithm using a Sigmoidal 
activation function for both the output and hidden units and a pool of 8 candidate units. 
All trials were successful, requiring 1700 epochs on the average. (This number counts 



The Cascade-Correlation Learning Architecture 529 

both the epochs used to train output weights and the epochs used to train candidate units.) 
The number of hidden units built into the net varied from 12 to 19, with an average of 
15.2 and a median of 15. Here is a histogram of the number of hidden units created: 

Hidden Number of 
Units Trials 

12 4 #### 

13 9 ######### 
14 24 ######################## 

15 19 ################### 

16 24 ######################## 
17 13 ############# 

18 5 ##### 

19 2 ## 

In terms of training epochs, Cascade-Correlation beats quickprop by a factor of 5 and 
standard back prop by a factor of 10, while building a network of about the same com­
plexity (15 hidden units). In terms of actual computation on a serial machine, however, 
the speedup is much greater than these numbers suggest In backprop and quickprop, 
each training case requires a forward and a backward pass through all the connections in 
the network; Cascade-Correlation requires only a forward pass. In addition, many of the 
Cascade-Correlation epochs are run while the network is much smaller than its final size. 
Finally, the cacheing strategy described above makes it possible to avoid re-computing 
the unit values for parts of the network that are not changing. 

Suppose that instead of epochs, we measure learning time in connection crossings, defined 
as the number of multiply-accumulate steps necessary to propagate activation values 
forward through the network and error values backward. This measure leaves out some 
computational steps, but it is a more accurate measure of computational complexity 
than comparing epochs of different sizes or comparing runtimes on different machines. 
The Lang and Witbrock result of 20,000 backprop epochs requires about 1.1 billion 
connection crossings. Their solution using 8000 quickprop epochs on the same network 
requires about 438 million crossings. An average Cascade-Correlation run with a pool of 
8 candidate units requires about 19 million crossings-a 23-fold speedup over quickprop 
and a 50-fold speedup over standard backprop. With a smaller pool of candidate units the 
speedup (on a serial machine) would be even greater, but the resulting networks might 
be somewhat larger. 

Figure 2b shows the output of a 12-hidden-unit network built by Cascade-Correlation 
as the input is scanned over the X-V field. This network properly classifies all 194 
training points. We can see that it interpolates smoothly for about the first 1.5 turns of 
the spiral, but becomes a bit lumpy farther out, where the training points are farther apart. 
This "receptive field" diagram is similar to that obtained by Lang and Witbrock using 
backprop, but is somewhat smoother. 



530 Fahlman and Lebiere 

2.2 N-INPUT PARITY 

Since parity has been a popular benchmark among other researchers, we ran Cascade­
Correlation on N-input parity problems with N ranging from 2 to 8. The best results 
were obtained with a sigmoid output unit and hidden units whose output is a Gaussian 
function of the sum of weighted inputs. Based on five trials for each value of N, our 
results were as follows: 

N Cases Hidden Average 
Units Epochs 

2 4 1 24 
3 8 1 32 
4 16 2 66 
5 32 2-3 142 
6 64 3 161 
7 128 4-5 292 
8 256 4-5 357 

For a rough comparison, Tesauro and Janssens [Tesauro, 1988] report that standard back­
prop takes about 2000 epochs for 8-input parity. In their study, they used 2N hidden units. 
Cascade-Correlation can solve the problem with fewer than N hidden units because it uses 
short-cut connections. 

As a test of generalization, we ran a few trials of Cascade-Correlation on the lO-input 
parity problem, training on either 50% or 25% of the 1024 patterns and testing on the 
rest. The number of hidden units built varied from 4 to 7 and training time varied from 
276 epochs to 551. When trained on half of the patterns, perfonnance on the test set 
averaged 96% correct; when trained on one quarter of the patterns, test-set performance 
averaged 90% correct Note that the nearest neighbor algorithm would get almost all of 
the test-set cases wrong. 

3 DISCUSSION 

We believe that that Cascade-Correlation algorithm offers the following advantages over 
network learning algorithms currently in use: 

• There is no need to guess the size, depth, and connectivity pattern of the network 
in advance. A reasonably small (though not optimal) net is built automatically, 
perhaps with a mixture of unit-types . 

• Cascade-Correlation learns fast In backprop, the hidden units engage in a complex 
dance before they settle into distinct useful roles; in Cascade-Correlation, each unit 
sees a fixed problem and can move decisively to solve that problem. For the 
problems we have investigated to date, the learning time in epochs grows roughly 
as NlogN, where N is the number of hidden units ultimately needed to solve the 
problem. 



The Cascade-Correlation Learning Architecture 531 

• Cascade-Correlation can build deep nets (high-order feature detectors) without the 
dramatic slowdown we see in deep back-propagation networks. 

• Cascade-Correlation is useful for incremental learning. in which new infonnation is 
added to an already-trained net. Once built. a feature detector is never cannibalized. 
It is available from that time on for producing outputs or more complex features. 

• At any given time. we train only one layer of weights in the network. The rest of 
the network is constant. so results can be cached. 

• There is never any need to propagate error signals backwards through network 
connections. A single residual error signal can be broadcast to all candidates. 
The weighted connections transmit signals in only one direction. eliminating one 
difference between these networks and biological synapses. 

• The candidate units do not interact. except to pick a winner. Each candidate sees the 
same inputs and error signals. This limited communication makes the architecture 
attractive for parallel implementation. 

4 RELATION TO OTHER WORK 

The principal differences between Cascade-Correlation and older learning architectures 
are the dynamic creation of hidden units. the way we stack the new units in multiple 
layers (with a fixed output layer). the freezing of units as we add them to the net. and 
the way we train new units by hill-climbing to maximize the unit's correlation with the 
residual error. The most interesting discovery is that by training one unit at a time instead 
of training the whole network at once. we can speed up the learning process considerably. 
while still creating a reasonably small net that generalizes well. 

A number of researchers [Ash. 1989.Moody. 1989] have investigated networks that add 
new units or receptive fields within a single layer in the course of learning. While 
single-layer systems are well-suited for some problems. these systems are incapable of 
creating higher-order feature detectors that combine the outputs of existing units. The 
idea of building feature detectors and then freezing them was inspired in part by the 
work of Waibel on modular networks [Waibel. 19891. but in his model the structure of 
the sub-networks must be fixed before learning begins. 

We know of only a few attempts to build up multi-layer networks as the learning pro­
gresses. Our decision to look at models in which each unit can see all pre-existing units 
was inspired to some extent by work on progressively deepening threshold-logic models 
by Merrick Furst and Jeff Jackson at Carnegie Mellon. (They are not actively pursuing 
this line at present.) Gallant [Gallant. 1986] briefly mentions a progressively deepening 
perceptron model (his "inverted pyramidU model) in which units are frozen after being 
installed. However. he has concentrated most of his research effort on models in which 
new hidden units are generated at random rather than by a deliberate training process. 
The SONN model of Tenorio and Lee [Tenorio, 1989] builds a multiple-layer topology 



532 Fahlman and Lebiere 

to suit the problem at hand. Their algorithm places new -two-input units at randomly se­
lected locations, using a simulated annealing search to keep only the most useful ones-a 
very different approach from ours. 

Acknowledgments 

We would like to thank Merrick Furst, Paul Gleichauf, and David Touretzlcy for asking 
good questions that helped to shape this work. This research was sponsored in part by 
the National Science Foundation (Contract EET-8716324) and in part by the Defense 
Advanced Research Projects Agency (Contract F3361S-87-C-1499). 

References 
[Ash, 1989] 

[Fahlman, 1988] 

[Gallant, 1986] 

[Lang, 1988] 

[Moody, 1989] 

Ash, T. (1989) "Dynamic Node Creation in Back-Propagation Net­
works", Technical Report 8901, Institute for Cognitive Science, Uni­
versity of California, San Diego. 

Fahlman, S. E. (1988) "Faster-Learning Variations on Back­
Propagation: An Empirical Study" in Proceedings of the 1988 Con­
nectionist Models Summer School, Morgan Kaufmann. 

Gallant, S. I. (1986) "Three Constructive Algorithms for Network 
Learning" in Proceedings. 8th Annual Conference of the Cognitive 
Science Society. 

Lang, K. J. and Witbrock, M. J. (1988) "Learning to Tell Two Spirals 
Apart" in Proceedings of the 1988 Connectionist Models Summer 
School, Morgan Kaufmann. 

Moody, J. (1989) "Fast Learning in Multi-Resolution Hierarchies" in 
D. S. Touretzky (ed.), Advances in Neural Information Processing 
Systems 1, Morgan Kaufmann. 

[Rumelhart, 1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986) "Learning 
Internal Representations by Error Propagation" in Rumelhart, D. E. 
and McClelland, J. L.,Parallel Distributed Processing: Explorations 
in the Microstructure of Cognition, MIT Press. 

[Tenorio, 1989] Tenorio, M. E, and Lee, W. T. (1989) "Self-Organizing Neural Nets 
for the Identification Problem" in D. S. Touretzky (ed.), Advances in 
Neural Information Processing Systems 1, Morgan Kaufmann. 

[Tesauro, 1988] Tesauro, G. and Janssens, B. (1988) "Scaling Relations in Back­
Propagation Learning" in Complex Systems 2 39-44. 

[Waibel, 1989] Waibel, A. (1989) "Consonant Recognition by Modular Construction 
of Large Phonemic Time-Delay Neural Networks" in D. S. TouretzlcY 
(ed.), Advances in Neural Information Processing Systt ms 1, Morgan 
Kaufmann. 


