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ABSTRACT 

The learning dynamics of the back-propagation algorithm are in­
vestigated when complexity constraints are added to the standard 
Least Mean Square (LMS) cost function. It is shown that loss of 
generalization performance due to overtraining can be avoided 
when using such complexity constraints. Furthermore, "energy," 
hidden representations and weight distributions are observed and 
compared during learning. An attempt is made at explaining the 
results in terms of linear and non-linear effects in relation to the 
gradient descent learning algorithm. 

1 INTRODUCTION 

It is generally admitted that generalization performance of back-propagation net­
works (Rumelhart, Hinton & Williams, 1986) will depend on the relative size ofthe 
training data and of the trained network. By analogy to curve-fitting and for theo­
retical considerations, the generalization performance of the network should de­
crease as the size of the network and the associated number of degrees of freedom 
increase (Rumelhart, 1987; Denker et al., 1987; Hanson & Pratt, 1989). 

This paper examines the dynamics of the standard back-propagation algorithm 
(BP) and of a constrained back-propagation variation (CBP), designed to adapt 
the size of the network to the training data base. The performance, learning 
dynamics and the representations resulting from the two algorithms are compared. 
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2 GENERALIZATION PERFORM:ANCE 

2.1 STANDARD BACK-PROPAGATION 

In Chauvin (In Press). the generalization performance of a back-propagation net­
work was observed for a classification task from spectrograms into phonemic cate­
gories (single speaker. 9 phonemes. 10msx16frequencies spectrograms. 63 training 
patterns. 27 test patterns). This performance was examined as a function of the 
number of training cycles and of the number of (logistic) hidden units (see also. 
Morgan & Bourlard. 1989). During early learning. the performance of the network 
appeared to be basically independent of the number of hidden units (provided a 
minimal size). However. after prolonged training. performance started to decrease 
with training at a rate that was a function of the size of the hidden layer. More 
precisely. from 500 to 10.000 cycles. the generalization performance (in terms of 
percentage of correctly classified spectrograms) decreased from about 93% to 74% 
for a 5 hidden unit network and from about 95% to 62% for a 10 hidden unit 
network. These results confirmed the basic hypothesis proposed in the Introduc­
tion but only with a sufficient number of training cycles (overtraining). 

2.2 CONSTRAINED BACK-PROPAGATION 

Several constraints have been proposed to "adapt" the size of the trained network 
to the training data. These constraints can act directly on the weights. or on the net 
input or activation of the hidden units (Rumelhart. 1987; Chauvin. 1987. 1989. In 
Press; Hanson & Pratt. 1989; Ji. Snapp & Psaltis. 1989; Ishikawa. 1989; Golden 
and Rumelhart. 1989). The complete cost function adopted in Chauvin (In Press) 
for the speech labeling task was the following: 
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E, is the usual LMS error computed at the output layer. E" is a function of the 
squared activations of the hidden units and W is a function of the squared weights 
throughout the network. This constrained back-propagation (CBP) algorithm ba­
sically eliminated the overtraining effect: the resulting generalization performance 
remained constant (about 95%) throughout the complete training period. indepen­
dently of the original network size. 

3 ERROR AND ENERGY DYNAMICS 

Using the same speech labeling task as in Chauvin (In Press). the dynamics of the 
global variables of the network defined in Equation 1 (E,. E". and W) were 

observed during training of a network with 5 hidden units. Figure 1 represents the 
error and energy dynamics for the standard (BP) and the constrained back-propa­
gation algorithm (CBP). For BP and CBP. the error on the training patterns kept 
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Figure 1. "Energy" (left) and generalization error - LMS averaged 
over the test patterns and output units - (right) when using the stan­

dard (BP) or the constrainted (CBP) back-propagation algorithm 
during a typical run. 

decreasing during the entire training period (more slowly for CBP). The W dynam­
ics over the entire network were similar for BP and CBP (but the distributions were 
different, see below). 

3.1 STANDARD BACK-PROPAGATION 

As shown in Figure 1, the "energy" Ell (Equation 1) of the hidden layer slightly 

increases during the entire learning period, long after the minimum was reached for 
the test error (around 200 cycles). This "energy" reaches a plateau after long 
overtraining, around 10,000 cycles. The generalization error reaches a minimum 
and later increases as training continues, also slowly reaching a plateau around 
10,000 cycles. 

3.2 CONSTRAINED BACK-PROPAGATION 

With CBP, the "energy" decreases to a much lower level during early learning and 
remains about constant throughout the complete training period. The error quickly 
decreases during early learning and remains about constant during the rest of the 
training period, apparently stabilized by the energy and weight constraints given in 
Equation 1. 
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4 REPRESENTATION 

The hidden unit activations and weights of the networks were examined after learn­
ing. using BP or CBP. A hidden unit was considered "dead" when its contribution 
to any output unit (computed as the product of its activation times the correspond­
ing outgoing weight) was at least 50 times smaller than the total contribution from 
all hidden units. over the entire set of input patterns. 

4.1 STANDARD BACK-PROPAGATION 

As also observed by Hanson et al. (1989). standard back-propagation usually 
makes use of most or all hidden units: the representation of the input patterns is 
well distributed over the entire set of hidden units. even if the network is oversized 
for the task. The exact representation depends on the initial weights. 

4.2 CONSTRAINED BACK-PROPAGATION 

Using the constraints described in Equation 1. the hidden layer was reduced to 2 or 
3 hidden units for all the observed runs (2 hidden units corresponds to the minimal 
size network necessary to solve the task) . All the other units were actually "killed" 
during learning. independently of the size of the original network (from 4 to 11 
units in the simulations). Both the constraints on the hidden unit activations (E" ) 

and on the weights (W) contribute to this reduction. 

Figure 2 represents an example of the resulting weights from the input layer to a 
remaining hidden unit. As we can see. a few weights ended up dominating the 
entire set: they actually "picked up" a characteristic of the input spectrograms that 
allow the disctinction between two phoneme categories (this phenomenon was also 
predicted and observed by Rumelhart. 1989). In this case. the weights "picked 
up" the 10th and 14th frequency components of the spectrograms. both present 
during the 5th time interval. The characteristics of the spectrum make the corre­
sponding hidden unit especially responsive to the [0] phoneme. The specific non­
linear W constraint on the input-to-hidden weights used by CBP forced that hid­
den unit to acquire a very local receptor field. Note that this was not always ob­
served in the simulations. Some hidden units acquired broad receptor fields with 
weights distributed over the entire spectrogram (as it is always the case with stan­
dard BP). No statistical comparison was made to compute the relative ratio of local 
to distributed units. which probably depends on the exact form of the reduction 
constraint used in CB P. 

5 INTERPRETATION OF RESULTS 

We observed that the occurrence of overfitting effects depends both on the size of 
the network and on the number of training cycles. At this point. a better theoreti­
cal understanding of the back-propagation learning dynamics would be useful to 
explain this dependency (Chauvin. In Preparation). This section presents an infor­
mal interpretation of the results in terms of linear and non-linear phenomena. 



646 Chauvin 

• • • • • • • • • • 
• • 
• • • • • 
• • H -(l) • • • • • 

~ 
as • • 
...l • • • 
C • • • 
(l) 
~ • 
~ • • • • .r-! 

::t: • • • • • • 
0 • • • 
~ • • • a 

• • • • 
From Input Layer 

Figure 2. Typical fan-in weights after learning from the input layer 
to a hidden unit using the constrained back-propagation algorithm. 

5.1 LINEAR PHENOMENA 

These linear phenomena might be due to probable correlations between sample 
plus observation noise at the input level and the desired classification at the output 
level. The gradient descent learning rule should eventually make use of these cor­
relations to decrease the LMS error. However, these correlations are specific to 
the used training data set and should have a negative impact on the performance of 
the network on a testing data set. Figure 3 represents the generalization perform­
ance of linear networks with 1 and 7 hidden units (averaged over 5 runs) for the 
speech labeling task described above. As predicted, we can see that overtraining 
effects are actually generated by linear networks (as they would with a one-step 
algorithm; e.g., Vallet et a!., 1989). Interestingly, they occur even when the size of 
the network is minimum. These effects should obviously decrease by increasing the 
size of the training data set (therefore reducing the effect of sample and observa­
tion noise). 

5.2 NON-LINEAR PHENOMENA 

The second type of effect is non-linear. This is illustrated in Chauvin (In Press) 
with a curve-fitting problem. In the first problem, a non-linear back-propagation 
network (1 input unit, 1 output unit, 2 layers of 20 hidden units) is trained to fit a 
function composed of two linear segments separated by a discontinuity. The map­
ping realized by the network over the entire interval is observed as a function of the 
number of training cycles. It appears that the interpolated fit reaches a minimum 



Dynamic Behavior of Constrained Back-Propagation Networks 647 

0.10 " 
\ 
\ 
\ 

0.08· \' 
\ " _ ........ -

,~ ------
\ ~-----~~~-~---\ HI 

H 0.06- \ 
~ , 
H'~ ~------~-H7 ~ -----
~ ~--~~----0.04-

0.02· ------
Training 

Testing 

O~----------~.~--------~.----------~.----------~ o 1 2 3 4 

Number of cycles (xl000). 

Figure 3. LMS error for the training and test data sets of a speech 
labeling task as a function of the number of training cycles. A one 

hidden and a 7 hidden unit linear network are considered. 

and gets worse with the number of training cycles and with the size of the sample 
training set around the discontinuity. 

This phenomenon is evocative of an effect in interpolation theory known as the 
Runge effect (Steffenssen, 1950). In this case, a "well-behaved" bell-like func-
tion, f{x) = 1/(1 + r) , uniformly sampled n+l times over a {-D, +D] interval, is 

fitted with a polynomial of degree n. Runge showed that over the considered inter­
val, the maximum distance between the fitted function and the fitting polynomial 
goes to infinity as n increases. Note that in theory, there is no overfitting since the 
number of degree of freedoms associated with the polynomial matches the number 
of data points. However, the interpolation "overfitting effect" actually increases 
with the sampling data set, that is with the increased accuracy in the description of 
the fitted function. (Runge also showed that the effect may disappear by changing 
the size of the sampled interval or the distribution of the sampling data points.) 

We can notice that in the piecewise linear example, a linear network would have 
computed a linear mapping using only two degrees of freedom (the problem IS then 
equivalent to one-dimensional linear regression). With a non-linear network, sim­
ulations show that the network actually computes the desired mapping by slowly 
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fitting higher and higher "frequency components" present in the desired mapping 
(reminiscent of the Gibb's phenomenon observed with successive Fourier series 
approximations of a square wave; e.g., Sommerfeld, 1949). The discontinuity, 
considered as a singular point with high frequency components, is fitted during later 
stages of learning. Increasing the number of sampling points around the disconti­
nuilty generates an effect similar to the Runge effect with overtraining. In this 
sense, the notion of degrees of freedom in non-linear neural networks is not only a 
function of the network architecture - the .. capacity" of the network - and of the 
non-linearities of the fitted function but also of the learning algorithm (gradient 
descent), which gradually "adjusts" the "capacity" of the network to fit the non­
linearities required by the desired function. 

A practical classification task might generate not only linear overtraining effects 
due to sample and observation noise but also non-linear effects if a continuous 
input variable (such as a frequency component in the speech example) has to be 
classified in two different bins. It is also easy to imagine that noise may generate 
non-linear effects. At this stage, the non-linear effects involved in back-propaga­
tion networks composed of logistic hidden units are poorly understood. In general, 
both effects will probably occur in non-linear networks and might be difficult to 
assess. However, because of the gradient descent procedure, both effects seem to 
depend on the amount of training relative to the capacity of the network. The use 
of complexity constraints acting on the complexity of the network seems to consti­
tute a promising solution to the overtraining problem in both the linear and non-li­
near cases. 
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