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Decision making tasks that involve delayed consequences are very 
common yet difficult to address with supervised learning methods. 
If there is an accurate model of the underlying dynamical system, 
then these tasks can be formulated as sequential decision problems 
and solved by Dynamic Programming. This paper discusses rein­
forcement learning in terms of the sequential decision framework 
and shows how a learning algorithm similar to the one implemented 
by the Adaptive Critic Element used in the pole-balancer of Barto, 
Sutton, and Anderson (1983), and further developed by Sutton 
(1984), fits into this framework. Adaptive neural networks can 
play significant roles as modules for approximating the functions 
required for solving sequential decision problems. 

1 INTRODUCTION 

Most neural network research on learning assumes the existence of a supervisor or 
teacher knowledgeable enough to supply desired, or target, network outputs during 
training. These network learning algorithms are function approximation methods 
having various useful properties. Other neural network research addresses the ques­
tion of where the training information might come from. Typical of this research 
is that into reinforcement learning systems; these systems learn without detailed 
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instruction about how to interact successfully with reactive environments. Learn­
ing tasks involving delays between actions and their consequences are particularly 
difficult to address with supervised learning methods, and special reinforcement 
learning algorithms have been developed to handle them. In this paper, reinforce­
ment learning is related to the theory of sequential decision problems and to the 
computational methods known as Dynamic Programming (DP). DP methods are 
not learning methods because they rely on complete prior knowledge of the task, 
but their theory is nevertheless relevant for understanding and developing learning 
methods. 

An example of a sequential decision problem invloving delayed consequences is the 
version of the pole-balancing problem studied by Barto, Sutton, and Anderson 
(1983). In this problem the consequences of control decisions are not immediately 
available because training information comes only in the form of a "failure signal" 
occurring when the pole falls past a critical angle or when the cart hits an end of 
the track. The learning system used by Barto et al. (1983), and subsequently sys­
tematically explored by Sutton (1984), consists of two different neuron-like adaptive 
elements: an Associative Search Element (ASE), which implemented and adjusted 
the control rule, or decision policy, and an Adaptive Critic Element (ACE), which 
used the failure signal to learn how to provide useful moment-to-moment evaluation 
of control decisions. The focus of this paper is the algorithm implemented by the 
ACE: What computational task does this algorithm solve, and how does it solve it? 

Sutton (1988) analyzed a class of learning rules which includes the algorithm used 
by the ACE, calling them Temporal Difference, or TD, algorithms. Although Sut­
ton briefly discussed the relationship between TD algorithms and DP, he did not 
develop this perspective. Here, we discuss an algorithm slightly different from the 
one implemented by the ACE and call it simply the "TD algorithm" (although the 
class of TD algorithms includes others as well). The earliest use of a TD algorithm 
that we know of was by Samuel (1959) in his checkers player. Werbos (1977) was 
the first we know of to suggest such algorithms in the context of DP, calling them 
"heuristic dynamic programming" methods. The connection to dynamic program­
ming has recently been extensively explored by Watkins (1989), who uses the term 
"incremental dynamic programming." Also related is the "bucket brigade" used 
in classifier systems (see Liepins et al., 1989), the adaptive controller developed by 
Witten (1977), and certain animal learning models (see Sutton and Barto, to ap­
pear). Barto, Sutton, and Watkins (to appear) discuss the relationship between TD 
algorithms and DP more extensively than is possible here and provide references to 
other related research. 

2 OPTIMIZING DELAYED CONSEQUENCES 

Many problems require making decisions whose consequences emerge over time peri­
ods of variable and uncertain duration. Decision-making strategies must be formed 
that take into account expectations of both the short-term and long-term conse­
quences of decisions. The theory of sequential decision problems is highly developed 
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and includes formulations of both deterministic and stochastic problems (the books 
by Bertsekas, 1976, and Ross, 1983, are two of the many relevant texts). This the­
ory concerns problems such as the following special case of a stochastic problem. 
A decision maker (DM) interacts with a discrete-time stochastic dynamical system 
in such a way that, at each time step, the DM observes the system's current state 
and selects an action. After the action is performed, the DM receives (at the next 
time step) a certain amount of payoff that depends on the action and the current 
state, and the system makes a transition to a new state determined by the current 
state, the action, and random disturbances. Upon observing the new state, the DM 
chooses another action and continues in this manner for a sequence of time steps. 
The objective of the task is to form a rule for the DM to use in selecting actions, 
called a policy, that maximizes a measure of the total amount of payoff accumulated 
over time. The amount of time over which this measure is computed is the horizon 
of the problem, and a maximizing policy is an optimal policy. One commonly stud­
ied measure of cumulative payoff is the expected infinite-horizon discounted return, 
defined below. Because the objective is to maximize a measure of cumulative payoff, 
both short- and long-term consequences of decisions are important. Decisions that 
produce high immediate payoff may prevent high payoff from being received later 
on, and hence such decisions should not necessarily be included in optimal policies. 

More formally (following the presentation of Ross, 1983), a policy is a mapping, de­
noted 1r, that assigns an action to each state ofthe underlying system (for simplicity, 
here we consider only the special case of deterministic policies). Let Xt denote the 
system state at time step t, and if the DM uses policy 1r, the action it takes at step 
t is at = 1r(Xt). After the action is taken, the system makes a transition from state 
x = Xt to state y = Xt+l with a probability Pzy(at). At time step t + 1, the DM 
receives a payoff, rt+l, with expected value R(xt, at). For any policy 1r and state x, 
one can define the expected infinite-horizon discounted return (which we simply call 
the expected return) under the condition that the system begins in state x, the DM 
continues to use policy 1r throughout the future, and 'Y, 0 ::; 'Y < 1, is the discount 
factor: 

(1) 

where Xo is the initial system state, and E'Jr is the expectation assuming the DM uses 
policy 1r. The objective of the decision problem is to form a policy that maximizes 
the expected return defined by Equation 1 for each state x. 

3 DYNAMIC PROGRAMMING 

Dynamic Programming (DP) is a collection of computational methods for solving 
stochastic sequential decision problems. These methods require a model of the 
dynamical system underlying the decision problem in the form ofthe state transition 
probabilities, PZy(a), for all states x and y and actions a, as well as knowledge of the 
function, R( x, a), giving the payoff expectations for all states x and actions a. There 
are several different DP methods, all of which are iterative methods for computing 
optimal policies, and all of which compute sequences of different types of evaluation 
junctions. Most relevant to the TD algorithm is the evaluation function for a given 
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policy. This function assigns to each state the expected value of the return assuming 
the problem starts in that state and the given policy is used. Specifically, for policy 
1r and discount factor ,,(, the evaluation function, V';, assigns to each state, x, the 
expected return given the initial state x: 

For each state, the evaluation function provides a prediction of the return that will 
accrue throughout the future whenever this state is encountered if the given policy 
is followed . If one can compute the evaluation function for a state merely from 
observing that state, this prediction is effectively available immediately upon the 
system entering that state. Evaluation functions provide the means for assessing 
the temporally extended consequences of decisions in a temporally local manner. 

It can be shown (e.g., Ross, 1983) that the evaluation function V'Ylr is the unique 
function satisfying the following condition for each state x: 

(2) 

DP methods for solving this system of equations (i.e., for determining V'Ylr) typi­
cally proceed through successive approximations. For dynamical systems with large 
state sets the solution requires considerable computation. For systems with con­
tinuous state spaces, DP methods require approximations of evaluation functions 
(and also of policies). In their simplest form, DP methods rely on lookup-table 
representations of these functions, based on discretizations of the state space in 
continuous cases, and are therefore exponential in the state space dimension. In 
fact, Richard Bellman, who introduced the term Dynamic Programming (Bellman, 
1957), also coined the phrase "curse of dimensionality" to describe the difficulty of 
representing these functions for use in DP. Consequently, any advance in function 
approximation methods, whether due to theoretical insights or to the development 
of hardware having high speed and high capacity, can be used to great advantage 
in DP. Artificial neural networks therefore have natural applications in DP. 

Because DP methods rely on complete prior knowledge of the decision problem, 
they are not learning methods. However, DP methods and reinforcement learning 
methods are closely related, and many concepts from DP are relevant to the case 
of incomplete prior knowledge. Payoff values correspond to the available evaluation 
signals (the "primary reinforcers"), and the values of an evaluation function cor­
respond to improved evaluation signals (the "secondary reinforcers") such a those 
produced by the ACE. In the simplest reinforcement learning systems, the role of 
the dynamical system model required by DP is played by the real system itself. A 
reinforcement learning system improves performance by interacting directly with 
the real system. A system model is not required. 1 

1 Although reinforcement learning methods can greatly benefit from such models (Sutton, to 
appear). 
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4 THE TD ALGORITHM 

The TD algorithm approximates V1''Ir for a given policy 1(" in the absence of knowledge 
of the transition probabilities and the function determining expected payoff values. 
Assume that each system state is represented by a feature vector, and that V1''Ir can 
be approximated adequately as a function in a class of parameterized functions of 
the feature vectors, such as a class of functions parameterized by the connection 
weights of a neural network. Letting ¢>(Xt) denote the feature vector representing 
state Xt, let the estimated evaluation of Xt be 

where Vt is the weight vector at step t and f depends on the class of models assumed. 
In terms of a neural network, ¢>(Xt) is the input vector at time t, and Vt(Xt) is the 
output at time t, assuming no delay across the network. 

If we knew the true evaluations of the states, then we could define as an error the 
difference between the true evaluations and the estimated evaluations and adjust 
the weight vector Vt according to this error using supervised-learning methods. 
However, it is unrealistic to assume such knowledge in sequential decision tasks. 
Instead the TD algorithm uses the following update rule to adjust the weight vector: 

(3) 

In this equation, (l' is a positive step-size parameter, rt+l is the payoff received at 
time step t + I, Vt(Xt+d is the estimated evaluation of the state at t + 1 using the 
weight vector Vt (i.e., Vt(Xt+l) = f( Vt, ¢>(Xt+l))),2 and *!;(¢>(Xt)) is the gradient 
of f with respect to Vt evaluated at ¢>(Xt). If f is the inner product of Vt and 
¢>(Xt), this gradient is just ¢>(Xt), as it is for a single linear ACE element. In the 
case of an appropriate feedforward network, this gradient can be computed by the 
error backpropagation method as illustrated by Anderson (1986). One can think 
of Equation 3 as the usual supervised-learning rule using rt+l + iVt(Xt+d as the 
"target" output in the error term. 

To understand why the TD algorithm uses this target, assume that the DM is 
using a fixed policy for selecting actions. The output of the critic at time step t, 
Vt(Xt), is intended to be a prediction of the return that will accrue after time step 
t. Specifically, vt(Xt) should be an estimate for the expected value of 

where rt+l: is the payoff received at time step t + k. One way to adjust the weights 
would be to wait forever and use the actual return as a target. More practically, 

2 Instead of using Vt to evaluate the state at t + I, the learning tule used by the ACE by Barto et 
al. (1983) uses Vt+l. This closely approximates the algorithm described here if the weights change 
slowly. 
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one could wait n time steps and use what Watkins (1989) calls the n-step truncated 
return as a target: 

rt+l + 1Tt+2 + -y2rt+3 + ... + -yn-lrt+n. 

However, it is possible to do better than this. One can use what Watkins calls the 
corrected n-step truncated return as a target: 

rt+1 + ,rt+2 + -y2rt+3 + ... + -yn-lrt+n + ,nllt(xt+n), 

where lIt(xt+n) is the estimated evaluation of state Xt+n using the weight values at 
time t. Because lit (xt+n) is an estimate of the expected return from step t + n + 1 
onwards, -ynVi(xt+n) is an estimate for the missing terms in the n-step truncated 
return from state Xt. To see this, note that ,n lit (Xt+n) approximates 

,n[rt+n+l + -yrt+n+2 + ,2rt+n+3 + ... ]. 
MUltiplying through by -yn, this equals 

-ynrt+n+l + ,n+l rt+n+2 + ... , 
which is the part of the series missing from the n-step truncated return. The weight 
update rule for the TD algorithm (Equation 3) uses the corrected I-step truncated 
return as a target, and using the n-step truncated return for n > 1 produces obvious 
generalizations of this learning rule at the cost of requiring longer delay lines for 
implementation. 

The above justification of the TD algorithm is based on the assumption that the 
critic's output lIt(x) is in fact a useful estimate of the expected return starting 
from any state x. Whether this estimate is good or bad, however, the expected 
value of the n-step corrected truncated return is always better (Watkins, 1989). 
Intuitively, this is true because the n-step corrected truncated return includes more 
data, namely the payoffs rt+k, k = 1, ... , n. Surprisingly, as Sutton (1988) shows, 
the corrected truncated return is often a better estimate of the actual expected 
return than is the actual return itself. 

Another way to explain the TD algorithm is to refer to the system of equations from 
DP (Equation 2), which the evaluation function for a given policy must satisfy. One 
can obtain an error based on how much the current estimated evaluation function, 
Vi, departs from the desired condition given by Equation 2 for the current state, Xt: 

R(Xt, at} +, Ly PZt,y(at)Vi(y) - Vi(xt). 

But the function R and the transition probabilities, PZt,y(at), are not known. Con­
sequently, one substitutes rt+l, the payoff actually received at step t + 1, for the 
expected value of this payoff, R(xt, at), and substitutes the current estimated eval­
uation of the state actually reached in one step for the expectation of the estimated 
evaluations of states reachable in one step. That is, one uses Vi(Xt+l) in place of 
Ly PXt,y(at)lIt(y). Using the resulting error in the usual supervised-learning rule 
yields the TD algorithm (Equation 3). 
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5 USING THE TD ALGORITHM 

We have described the TD algorithm above as a method for approximating the 
evaluation function associated with a fixed policy. However, if the fixed policy and 
the underlying dynamical system are viewed together as an autonomous dynamical 
system, i.e, a system without input, then the TD algorithm can be regarded purely 
as a prediction method, a view taken by Sutton (1988). The predicted quantity 
can be a discounted sum of any observable signal, not just payoff. For example, in 
speech recognition, the signal might give the identity of a word at the word's end, 
and the prediction would provide an anticipatory indication of the word's identity. 
Unlike other adaptive prediction methods, the TD algorithm does not require fixing 
a prediction time interval. 

More relevant to the topic of this paper, the TD algorithm can be used as a com­
ponent in methods for improving policies. The pole-balancing system of Barto et 
al. (1983; see also Sutton, 1984) provides one example in which the policy changes 
while the TD algorithm operates. The ASE of that system changes the policy by at­
tempting to improve it according to the current estimated evaluation function . This 
approach is most closely related to the policy improvement algorithm of DP (e.g., 
see Bertsekas, 1976; Ross, 1983) and is one of several ways to use TD-like methods 
for improving policies; others are described by Watkins (1989) and Werbos (1987) . 

6 CONCLUSION 

Decision making problems involving delayed consequences can be formulated as 
stochastic sequential decision problems and solved by DP if there is a complete 
and accurate model of the underlying dynamical system. Due to the computational 
cost of exact DP methods and their reliance on complete and exact models, there 
is a need for methods that can provide approximate solutions and that do not re­
quire this amount of prior knowledge. The TD algorithm is an incremental, on-line 
method for approximating the evaluation function associated with a given policy 
that does not require a system model. The TD algorithm directly adjusts a pa­
rameterized model of the evaluation function-a model that can take the form of 
an artificial neural network. The TD learning process is a Monte-Carlo approxi­
mation to a successive approximation method of DP. This perspective provides the 
necessary framework for extending the theory of TD algorithms as well as that of 
other algorithms used in reinforcement learning. Adaptive neural networks can play 
significant roles as modules for approximating the required functions. 
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