
686 Barto, Sutton and Watkins

Sequential Decision Problems
and Neural Networks

A. G. Barto
Dept. of Computer and
Information Science
Univ. of Massachusetts
Amherst, MA 01003

R. S. Sutton
GTE Laboratories Inc.
Waltham, MA 02254

ABSTRACT

c. J. C. H. Watkins
25B Framfield

Highbury, London
N51UU

Decision making tasks that involve delayed consequences are very
common yet difficult to address with supervised learning methods.
If there is an accurate model of the underlying dynamical system,
then these tasks can be formulated as sequential decision problems
and solved by Dynamic Programming. This paper discusses rein­
forcement learning in terms of the sequential decision framework
and shows how a learning algorithm similar to the one implemented
by the Adaptive Critic Element used in the pole-balancer of Barto,
Sutton, and Anderson (1983), and further developed by Sutton
(1984), fits into this framework. Adaptive neural networks can
play significant roles as modules for approximating the functions
required for solving sequential decision problems.

1 INTRODUCTION

Most neural network research on learning assumes the existence of a supervisor or
teacher knowledgeable enough to supply desired, or target, network outputs during
training. These network learning algorithms are function approximation methods
having various useful properties. Other neural network research addresses the ques­
tion of where the training information might come from. Typical of this research
is that into reinforcement learning systems; these systems learn without detailed

Sequential Decision Problems and Neural Networks 687

instruction about how to interact successfully with reactive environments. Learn­
ing tasks involving delays between actions and their consequences are particularly
difficult to address with supervised learning methods, and special reinforcement
learning algorithms have been developed to handle them. In this paper, reinforce­
ment learning is related to the theory of sequential decision problems and to the
computational methods known as Dynamic Programming (DP). DP methods are
not learning methods because they rely on complete prior knowledge of the task,
but their theory is nevertheless relevant for understanding and developing learning
methods.

An example of a sequential decision problem invloving delayed consequences is the
version of the pole-balancing problem studied by Barto, Sutton, and Anderson
(1983). In this problem the consequences of control decisions are not immediately
available because training information comes only in the form of a "failure signal"
occurring when the pole falls past a critical angle or when the cart hits an end of
the track. The learning system used by Barto et al. (1983), and subsequently sys­
tematically explored by Sutton (1984), consists of two different neuron-like adaptive
elements: an Associative Search Element (ASE), which implemented and adjusted
the control rule, or decision policy, and an Adaptive Critic Element (ACE), which
used the failure signal to learn how to provide useful moment-to-moment evaluation
of control decisions. The focus of this paper is the algorithm implemented by the
ACE: What computational task does this algorithm solve, and how does it solve it?

Sutton (1988) analyzed a class of learning rules which includes the algorithm used
by the ACE, calling them Temporal Difference, or TD, algorithms. Although Sut­
ton briefly discussed the relationship between TD algorithms and DP, he did not
develop this perspective. Here, we discuss an algorithm slightly different from the
one implemented by the ACE and call it simply the "TD algorithm" (although the
class of TD algorithms includes others as well). The earliest use of a TD algorithm
that we know of was by Samuel (1959) in his checkers player. Werbos (1977) was
the first we know of to suggest such algorithms in the context of DP, calling them
"heuristic dynamic programming" methods. The connection to dynamic program­
ming has recently been extensively explored by Watkins (1989), who uses the term
"incremental dynamic programming." Also related is the "bucket brigade" used
in classifier systems (see Liepins et al., 1989), the adaptive controller developed by
Witten (1977), and certain animal learning models (see Sutton and Barto, to ap­
pear). Barto, Sutton, and Watkins (to appear) discuss the relationship between TD
algorithms and DP more extensively than is possible here and provide references to
other related research.

2 OPTIMIZING DELAYED CONSEQUENCES

Many problems require making decisions whose consequences emerge over time peri­
ods of variable and uncertain duration. Decision-making strategies must be formed
that take into account expectations of both the short-term and long-term conse­
quences of decisions. The theory of sequential decision problems is highly developed

688 Barto, Sutton and Watkins

and includes formulations of both deterministic and stochastic problems (the books
by Bertsekas, 1976, and Ross, 1983, are two of the many relevant texts). This the­
ory concerns problems such as the following special case of a stochastic problem.
A decision maker (DM) interacts with a discrete-time stochastic dynamical system
in such a way that, at each time step, the DM observes the system's current state
and selects an action. After the action is performed, the DM receives (at the next
time step) a certain amount of payoff that depends on the action and the current
state, and the system makes a transition to a new state determined by the current
state, the action, and random disturbances. Upon observing the new state, the DM
chooses another action and continues in this manner for a sequence of time steps.
The objective of the task is to form a rule for the DM to use in selecting actions,
called a policy, that maximizes a measure of the total amount of payoff accumulated
over time. The amount of time over which this measure is computed is the horizon
of the problem, and a maximizing policy is an optimal policy. One commonly stud­
ied measure of cumulative payoff is the expected infinite-horizon discounted return,
defined below. Because the objective is to maximize a measure of cumulative payoff,
both short- and long-term consequences of decisions are important. Decisions that
produce high immediate payoff may prevent high payoff from being received later
on, and hence such decisions should not necessarily be included in optimal policies.

More formally (following the presentation of Ross, 1983), a policy is a mapping, de­
noted 1r, that assigns an action to each state ofthe underlying system (for simplicity,
here we consider only the special case of deterministic policies). Let Xt denote the
system state at time step t, and if the DM uses policy 1r, the action it takes at step
t is at = 1r(Xt). After the action is taken, the system makes a transition from state
x = Xt to state y = Xt+l with a probability Pzy(at). At time step t + 1, the DM
receives a payoff, rt+l, with expected value R(xt, at). For any policy 1r and state x,
one can define the expected infinite-horizon discounted return (which we simply call
the expected return) under the condition that the system begins in state x, the DM
continues to use policy 1r throughout the future, and 'Y, 0 ::; 'Y < 1, is the discount
factor:

(1)

where Xo is the initial system state, and E'Jr is the expectation assuming the DM uses
policy 1r. The objective of the decision problem is to form a policy that maximizes
the expected return defined by Equation 1 for each state x.

3 DYNAMIC PROGRAMMING

Dynamic Programming (DP) is a collection of computational methods for solving
stochastic sequential decision problems. These methods require a model of the
dynamical system underlying the decision problem in the form ofthe state transition
probabilities, PZy(a), for all states x and y and actions a, as well as knowledge of the
function, R(x, a), giving the payoff expectations for all states x and actions a. There
are several different DP methods, all of which are iterative methods for computing
optimal policies, and all of which compute sequences of different types of evaluation
junctions. Most relevant to the TD algorithm is the evaluation function for a given

Sequential Decision Problems and Neural Networks 689

policy. This function assigns to each state the expected value of the return assuming
the problem starts in that state and the given policy is used. Specifically, for policy
1r and discount factor ,,(, the evaluation function, V';, assigns to each state, x, the
expected return given the initial state x:

For each state, the evaluation function provides a prediction of the return that will
accrue throughout the future whenever this state is encountered if the given policy
is followed . If one can compute the evaluation function for a state merely from
observing that state, this prediction is effectively available immediately upon the
system entering that state. Evaluation functions provide the means for assessing
the temporally extended consequences of decisions in a temporally local manner.

It can be shown (e.g., Ross, 1983) that the evaluation function V'Ylr is the unique
function satisfying the following condition for each state x:

(2)

DP methods for solving this system of equations (i.e., for determining V'Ylr) typi­
cally proceed through successive approximations. For dynamical systems with large
state sets the solution requires considerable computation. For systems with con­
tinuous state spaces, DP methods require approximations of evaluation functions
(and also of policies). In their simplest form, DP methods rely on lookup-table
representations of these functions, based on discretizations of the state space in
continuous cases, and are therefore exponential in the state space dimension. In
fact, Richard Bellman, who introduced the term Dynamic Programming (Bellman,
1957), also coined the phrase "curse of dimensionality" to describe the difficulty of
representing these functions for use in DP. Consequently, any advance in function
approximation methods, whether due to theoretical insights or to the development
of hardware having high speed and high capacity, can be used to great advantage
in DP. Artificial neural networks therefore have natural applications in DP.

Because DP methods rely on complete prior knowledge of the decision problem,
they are not learning methods. However, DP methods and reinforcement learning
methods are closely related, and many concepts from DP are relevant to the case
of incomplete prior knowledge. Payoff values correspond to the available evaluation
signals (the "primary reinforcers"), and the values of an evaluation function cor­
respond to improved evaluation signals (the "secondary reinforcers") such a those
produced by the ACE. In the simplest reinforcement learning systems, the role of
the dynamical system model required by DP is played by the real system itself. A
reinforcement learning system improves performance by interacting directly with
the real system. A system model is not required. 1

1 Although reinforcement learning methods can greatly benefit from such models (Sutton, to
appear).

690 Barto, Sutton and Watkins

4 THE TD ALGORITHM

The TD algorithm approximates V1''Ir for a given policy 1(" in the absence of knowledge
of the transition probabilities and the function determining expected payoff values.
Assume that each system state is represented by a feature vector, and that V1''Ir can
be approximated adequately as a function in a class of parameterized functions of
the feature vectors, such as a class of functions parameterized by the connection
weights of a neural network. Letting ¢>(Xt) denote the feature vector representing
state Xt, let the estimated evaluation of Xt be

where Vt is the weight vector at step t and f depends on the class of models assumed.
In terms of a neural network, ¢>(Xt) is the input vector at time t, and Vt(Xt) is the
output at time t, assuming no delay across the network.

If we knew the true evaluations of the states, then we could define as an error the
difference between the true evaluations and the estimated evaluations and adjust
the weight vector Vt according to this error using supervised-learning methods.
However, it is unrealistic to assume such knowledge in sequential decision tasks.
Instead the TD algorithm uses the following update rule to adjust the weight vector:

(3)

In this equation, (l' is a positive step-size parameter, rt+l is the payoff received at
time step t + I, Vt(Xt+d is the estimated evaluation of the state at t + 1 using the
weight vector Vt (i.e., Vt(Xt+l) = f(Vt, ¢>(Xt+l))),2 and *!;(¢>(Xt)) is the gradient
of f with respect to Vt evaluated at ¢>(Xt). If f is the inner product of Vt and
¢>(Xt), this gradient is just ¢>(Xt), as it is for a single linear ACE element. In the
case of an appropriate feedforward network, this gradient can be computed by the
error backpropagation method as illustrated by Anderson (1986). One can think
of Equation 3 as the usual supervised-learning rule using rt+l + iVt(Xt+d as the
"target" output in the error term.

To understand why the TD algorithm uses this target, assume that the DM is
using a fixed policy for selecting actions. The output of the critic at time step t,
Vt(Xt), is intended to be a prediction of the return that will accrue after time step
t. Specifically, vt(Xt) should be an estimate for the expected value of

where rt+l: is the payoff received at time step t + k. One way to adjust the weights
would be to wait forever and use the actual return as a target. More practically,

2 Instead of using Vt to evaluate the state at t + I, the learning tule used by the ACE by Barto et
al. (1983) uses Vt+l. This closely approximates the algorithm described here if the weights change
slowly.

Sequential Decision Problems and Neural Networks 691

one could wait n time steps and use what Watkins (1989) calls the n-step truncated
return as a target:

rt+l + 1Tt+2 + -y2rt+3 + ... + -yn-lrt+n.

However, it is possible to do better than this. One can use what Watkins calls the
corrected n-step truncated return as a target:

rt+1 + ,rt+2 + -y2rt+3 + ... + -yn-lrt+n + ,nllt(xt+n),

where lIt(xt+n) is the estimated evaluation of state Xt+n using the weight values at
time t. Because lit (xt+n) is an estimate of the expected return from step t + n + 1
onwards, -ynVi(xt+n) is an estimate for the missing terms in the n-step truncated
return from state Xt. To see this, note that ,n lit (Xt+n) approximates

,n[rt+n+l + -yrt+n+2 + ,2rt+n+3 + ...].
MUltiplying through by -yn, this equals

-ynrt+n+l + ,n+l rt+n+2 + ... ,
which is the part of the series missing from the n-step truncated return. The weight
update rule for the TD algorithm (Equation 3) uses the corrected I-step truncated
return as a target, and using the n-step truncated return for n > 1 produces obvious
generalizations of this learning rule at the cost of requiring longer delay lines for
implementation.

The above justification of the TD algorithm is based on the assumption that the
critic's output lIt(x) is in fact a useful estimate of the expected return starting
from any state x. Whether this estimate is good or bad, however, the expected
value of the n-step corrected truncated return is always better (Watkins, 1989).
Intuitively, this is true because the n-step corrected truncated return includes more
data, namely the payoffs rt+k, k = 1, ... , n. Surprisingly, as Sutton (1988) shows,
the corrected truncated return is often a better estimate of the actual expected
return than is the actual return itself.

Another way to explain the TD algorithm is to refer to the system of equations from
DP (Equation 2), which the evaluation function for a given policy must satisfy. One
can obtain an error based on how much the current estimated evaluation function,
Vi, departs from the desired condition given by Equation 2 for the current state, Xt:

R(Xt, at} +, Ly PZt,y(at)Vi(y) - Vi(xt).

But the function R and the transition probabilities, PZt,y(at), are not known. Con­
sequently, one substitutes rt+l, the payoff actually received at step t + 1, for the
expected value of this payoff, R(xt, at), and substitutes the current estimated eval­
uation of the state actually reached in one step for the expectation of the estimated
evaluations of states reachable in one step. That is, one uses Vi(Xt+l) in place of
Ly PXt,y(at)lIt(y). Using the resulting error in the usual supervised-learning rule
yields the TD algorithm (Equation 3).

692 Barto, Sutton and Watkins

5 USING THE TD ALGORITHM

We have described the TD algorithm above as a method for approximating the
evaluation function associated with a fixed policy. However, if the fixed policy and
the underlying dynamical system are viewed together as an autonomous dynamical
system, i.e, a system without input, then the TD algorithm can be regarded purely
as a prediction method, a view taken by Sutton (1988). The predicted quantity
can be a discounted sum of any observable signal, not just payoff. For example, in
speech recognition, the signal might give the identity of a word at the word's end,
and the prediction would provide an anticipatory indication of the word's identity.
Unlike other adaptive prediction methods, the TD algorithm does not require fixing
a prediction time interval.

More relevant to the topic of this paper, the TD algorithm can be used as a com­
ponent in methods for improving policies. The pole-balancing system of Barto et
al. (1983; see also Sutton, 1984) provides one example in which the policy changes
while the TD algorithm operates. The ASE of that system changes the policy by at­
tempting to improve it according to the current estimated evaluation function . This
approach is most closely related to the policy improvement algorithm of DP (e.g.,
see Bertsekas, 1976; Ross, 1983) and is one of several ways to use TD-like methods
for improving policies; others are described by Watkins (1989) and Werbos (1987) .

6 CONCLUSION

Decision making problems involving delayed consequences can be formulated as
stochastic sequential decision problems and solved by DP if there is a complete
and accurate model of the underlying dynamical system. Due to the computational
cost of exact DP methods and their reliance on complete and exact models, there
is a need for methods that can provide approximate solutions and that do not re­
quire this amount of prior knowledge. The TD algorithm is an incremental, on-line
method for approximating the evaluation function associated with a given policy
that does not require a system model. The TD algorithm directly adjusts a pa­
rameterized model of the evaluation function-a model that can take the form of
an artificial neural network. The TD learning process is a Monte-Carlo approxi­
mation to a successive approximation method of DP. This perspective provides the
necessary framework for extending the theory of TD algorithms as well as that of
other algorithms used in reinforcement learning. Adaptive neural networks can play
significant roles as modules for approximating the required functions.

Acknowledgements

A. G. Barto's contribution was supported by the Air Force Office of Scientific Re­
search, Bolling AFB, through grants AFOSR-87-0030 and AFOSR-89-0526.

References

C. W. Anderson. (1986) Learning and Problem Solving with Multilayer Connec­
tionist Systems. PhD thesis, University of Massachusetts, Amherst, MA.

Sequential Decision Problems and Neural Networks 693

A. G. Barto, R. S. Sutton, and C. W. Anderson. (1983) Neuronlike elements that
can solve difficult learning control problems. IEEE Transactions on Systems, Man,
and Cybernetics, 13:835-846.

A. G. Barto, R. S. Sutton, and C. Watkins. (to appear) Learning and sequential
decision making. In M. Gabriel and J. W. Moore, editors, Learning and Computa­
tional Neuroscience. The MIT Press, Cambridge, MA.

R. E. Bellman. (1957) Dynamic Programming. Princeton University Press, Prince­
ton, NJ.

D. 1. Bertsekas. (1976) Dynamic Programming and Stochastic Control. Academic
Press, New York.

Liepins, G. E., Hilliard, M.R., Palmer, M., and Rangarajan, G. (1989) Alternatives
for classifier system credit assignment. Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, 756-761.

S. Ross. (1983) Introduction to Stochastic Dynamic Programming. Academic Press,
New York.

A. L. Samuel. (1959) Some studies in machine learning using the game of checkers.
IBM Journal on Research and Development, 210-229.

R. S. Sutton. (1984) Temporal Credit Assignment in Reinforcement Learning. PhD
thesis, University of Massachusetts, Amherst, MA.

R. S. Sutton. (1988) Learning to predict by the methods of temporal differences.
Machine Learning, 3:9-44.

R. S. Sutton (to appear) First results with Dyna, an integrated architecture for
learning planning and reacting. Proceedings of the 1990 AAAI Symposium on Plan­
ning in Uncertain, Unpredictable, or Changing Environments.

R. S. Sutton and A. G. Barto. (to appear) Time-derivative models of Pavlovian
reinforcement. In M. Gabriel and J. W. Moore, editors, Learning and Computational
Neuroscience. The MIT Press, Cambridge, MA.

C. J. C. H. Watkins. (1989) Learning from Delayed Rewards. PhD thesis, Cam­
bridge University, Cambridge, England.

P. J. Werbos. (1977) Advanced forecasting methods for global crisis warning and
models of intelligence. General Systems Yearbook, 22:25-38.

P. J. Werbos. (1987) Building and understanding adaptive systems: A statisti­
cal/numerical approach to factory automation and brain research. IEEE Transac­
tions on Systems, Man, and Cybernetics, 17:7-20.

1. H. Witten. (1977). An adaptive optimal controller for discrete-time markov
environments. Information and Control, 34:286-295.

