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The existence of modularity in the organization of nervous systems 
(e.g. cortical columns and olfactory glomeruli) is well known. We 
show that localized activity patterns in a layer of cells, collective 
excitations, can induce the formation of modular structures in the 
anatomical connections via a Hebbian learning mechanism. The 
networks are spatially homogeneous before learning, but the spon­
taneous emergence of localized collective excitations and subse­
quently modularity in the connection patterns breaks translational 
symmetry. This spontaneous symmetry breaking phenomenon is 
similar to those which drive pattern formation in reaction-diffusion 
systems. We have identified requirements on the patterns of lateral 
connections and on the gains of internal units which are essential 
for the development of modularity. These essential requirements 
will most likely remain operative when more complicated (and bi­
ologically realistic) models are considered. 
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1 Modularity in Nervous Systems 

Modular organization exists throughout the nervous system on many different spa­
tial scales. On the very small scale, synapses appear to be clustered on dendrites. 
On the very large scale, the brain as a whole is composed of many anatomically 
and functionally distinct regions. At intermediate scales, the scales of networks and 
maps, the brain exhibits columnar structures. 

The purpose of this work is to suggest possible mechanisms for the development 
of modular structures at the intermediate scales of networks and maps. The best 
known modular structure at this scale is the column. Many modality- specific 
variations of columnar organization are known, for example orientation selective 
columns, ocular dominance columns, color sensitive blobs, somatosensory barrels, 
and olfactory glomeruli. In addition to these anatomically well-established struc­
tures, other more speculative modular anatomical structures may exist. These 
include the frontal eye fields of association cortex whose modular structure is in­
ferred only from electrophysiology and the hypothetical existence of minicolumns 
and possibly neuronal groups. 

Although a complete biophysical picture of the development of modular structures 
is still unavailable, it is well established that electrical activity is crucial for the 
development of certain modular structures such as complex synaptic zones and oc­
ular dominance columns (see Kalil 1989 and references therein). It is also generally 
conjectured that a Hebb-like mechanism is operative in this development. These 
observations form a basis for our operating hypothesis described below. 

2 Operating Hypothesis and Modeling Approach 

Our hypothesis in this work is that localized activity patterns in a layer of cells 
induce the development of modular anatomical structure within the layer. We 
further hypothesize that the emergence of localized activity patterns in a layer is 
due to the properties of the intrinsic network dynamics and does not necessarily 
depend upon the system receiving localized patterns of afferent activity. 

Our work therefore has two parts. First, we show that localized patterns of ac­
tivity on a preferred spatial scale, collective excitations, spontaneously emerge in 
homogeneous networks with appropriate lateral connectivity and cellular response 
properties when driven with arbitrary stimulus (see Moody 1990). Secondly, we 
show that these collective excitations induce the formation of modular structures 
in the connectivity patterns when coupled to a Hebbian learning mechanism. 

The emergence of collective excitations at a preferred spatial scale in a homogeneous 
network breaks translational symmetry and is an example of spontaneous symmetry 
breaking. The Hebbian learning freezes the modular structure into the anatomy. 
The time scale of collective excitations is short, while the Hebbian learning process 
occurs over a longer time scale. The spontaneous symmetry breaking mechanism is 
similar to that which drives pattern formation in reaction-diffusion systems (Turing 
1952, Meinhardt 1982). Reaction-diffusion models have been applied to pattern for-
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Figure 1: Network Models. A: Additive Model. B: Shunting Inhibition Model. 
Artwork after Pearson et al. (1987). 

mation in both biological and physical systems. One of the best known applications 
is to the development of zebra stripes and leopard spots. Also, a network model 
with dynamics exhibiting spontaneous symmetry breaking has been proposed by 
Cowan (1982) to explain geometrical visual hallucination patterns. 

Previous work by Pearson et al. (1987) demonstrated empirically that modularity 
emerged in simulations of an idealized but rather complex model of somatosensory 
cortex. The Pearson work was purely empirical and did not attempt to analyze 
theoretically why the modules developed. It provided an impetus, however, for our 
developing the theoretical results which we present here and in Moody (1990). 

Our work is thus intended to provide a possible theoretical foundation for the de­
velopment of modularity. We have limited our attention to simple models which 
we can analyze mathematically in order to identify the essential requirements for 
the formation of modules. To convince ourselves that both collective excitations 
and the consequent development of modules are somewhat universal, we have con­
sidered several different network models. All models exhibit collective excitations. 
We believe that more biologically realistic (and therefore more complicated) models 
will very likely exhibit similar behaviors. 

This paper is a substantially abbreviated version of Chernjavsky and Moody (1990). 

3 Network Dynamics: Collective Excitations 

The analysis of network dynamics presented in this section is adapted from Moody 
(1990). Due to space limitations, we present here a detailed analysis of only the 
simplest model which exhibits collective excitations. 

All network models which we consider possess a single layer of receptor cells which 
provide input to a single internal layer of laterally-connected cells. Two general 
classes of models are considered (see figure 1): additive models and shunting in­
hibition models. The additive models contain a single population of internal cells 
which make both lateral excitatory and inhibitory connections. Both connection 
types are additive. The shunting inhibition models have two populations of cells 
in the internal layer: excitatory cells which make additive synaptic axonal contact 
with other cells and inhibitory cells which shunt the activities of excitatory cells. 
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Figure 2: A: Excitatory, Inhibitory, and Difference of Gaussian Lateral Connection 
Patterns. B: Magnification Functions for the Linear Additive Model. 

The additive models are further subdivided into models with linear internal units 
and models with nonlinear (particularly sigmoidal) internal units. The shunting 
inhibition models have linear excitatory units and sigmoidal inhibitory units. We 
have considered two variants of the shunting models, those with and without lateral 
excitatory connections. 

For simplicity and tractability, we have limited the use of nonlinear response func­
tions to at most one cell population in all models. More elaborate network models 
could make greater use of nonlinearity, a greater variety of cell types (eg. dis in­
hibitory cells), and use more ornate connectivity patterns. However, such additional 
structure can only add richness to the network behavior and is not likely to remove 
the collective excitation phenomenon. 

3.1 Dynamics for the Linear Additive Model 

To elucidate the fundamental requirements for the spontaneous emergence of col­
lective excitations, we now focus on the minimal model which exhibits the phe­
nomenon, the linear additive model. This model is exactly solvable. 

As we will see, collective excitations will emerge provided that the appropriate 
lateral connectivity patterns are present and that the gains of the internal units are 
sufficiently high. These basic requirements will carryover to the nonlinear additive 
and shunting models. 

The network relaxation equations for the linear additive model are: 

(1) 

where Rj and Ej are the activities (firing rates) of the ph receptor and internal 
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cells respectively, Vt is the somatic potential of the ith internal cell, Wij" and 
Wit are the afferent and lateral connections respectively, and Td is the dynamical 
relaxation time. The somatic potentials and firing rates of the internal units are 
linearly related by Ei = (Vt - O)/f. where 0 is an offset or threshold and c 1 is the 
gam. 

The steady state solutions of the network equations can be solved exactly by refor­
mulating the problem in the continuum limit (i H- x): 

Td ~ V(x) = -V(x) + A(x) + J dy wlat(x - y)E(y) 

A(x) = J dy waf! (x - y)R(y) 

(2) 

(3) 

The functions R(y) and E(y) are activation densities in the receptor and internal 
layers respectively. A(x) is the integrated input activation density to the internal 
layer. The functions waJf (x - y) and wlat(x - y) are interpreted as connection 
densities. Note that the network is spatially homogeneous since the connection 
densities depend only on the relative separation of post-synaptic and pre-synaptic 
cells (x - y). Examples of lateral connectivity patterns wlat (x - y) are shown 
in figure 2A. These include local gaussian excitation, intermediate range gaussian 
inhibition, and a scaled difference of gaussians (DOG). 

The exact stationary solution ft V(x) = 0 of the continuum dynamics of equation 2 
can be computed by fourier transforming the equations to the spatial frequency 
domain. The solution thereby obtained (for () = 0) is E(k) = M(k)A(k), where the 
variable k is the spatial frequency and !l1(k) is the network magnification function: 

1 
M(k) = f. _ Wlat(k)' (4) 

Positive magnification factors correspond to stable modes. When the magnification 
function is large and positive, the network magnifies afferent activity structure on 
specific spatial scales. This occurs when the inverse gain f. is sufficiently small 
and/or the fourier transform of the pattern of lateral connectivity W 1at (k) has a 
peak at a non-zero frequency. 

Figure 2B shows magnification functions (plotted as a function of spatial scale 
271' / k) corresponding to the lateral connectivity patterns shown in figure 2A for a 
network with f. = 1. Note that the gaussian excitatory and gaussian inhibitory 
connection patterns (which have total integrated weight ±0.25) magnify structure 
at large spatial scales by factors of 1.33 and 0.80 respectively. The scale DOG 
connectivity pattern (which has total weight 0) gives rise to no large scale or small 
scale magnification, but rather magnifies structure on an intermediate spatial scale 
of 17 cells. 

We illustrate the response of linear networks with unit gain f. = 1 and different 
lateral connectivity patterns in figure 3. The networks correspond to connectivities 
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Figure 3: Response of a Linear Network to Random Input. A: Response of neu­
tral (dashed), lateral excitatory (upper solid), and lateral inhibitory (lower solid) 
networks. B: Collective excitations (solid) as response to random input (dashed) in 
network with DOG lateral connectivity. 

and magnification functions shown in figure 2. Part A, shows the response E(x) 
of neutral, gaussian excitatory, and gaussian inhibitory networks to net afferent in­
put A(x) generated from a random 1//2 noise distribution. The neutral network 
(no lateral connections) yields the identity response to random input; the networks 
with the excitatory and inhibitory lateral connection patterns exhibit boosted and 
reduced response respectively. Part B shows the emergence of collective excitations 
(solid) for the scaled DOG lateral connectivity. The resulting collective excitations 
have a typical period of about 17 cells, corresponding to the peak in the magnifi­
cation function shown in figure 2. Note that the positions of peaks and troughs of 
the collective excitations correspond approximately to local extrema in the random 
input (dashed) . 

It is interesting to note that although the individual components of the networks 
are all linear, the overall response of the interacting system is nonlinear. It is 
this collective nonlinearity of the system which enables the emergence of collective 
excitations. Thus, although the connectivity giving rise to the response in figure 3B 
is a scaled sum of the connectivities of the excitatory and inhibitory networks of 
figure 3A, the responses themselves do not add. 

3.2 Dynamics for Nonlinear Models 

The nonlinear models, including the sigmoidal additive model and the shunting 
models, exhibit the collective excitation phenomenon as well. These models can 
not be solved exactly, however. See Moody (1990) for a detailed description. 
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Figure 4: Development of Modularity in the Nonlinear Shunting Inhibition Model. 
Curves represent the average incoming connection value (either afferent connections 
or lateral connections) for each excitatory internal unit. A: Time development of 
Afferent Modularity. B: Time development of Lateral Modularity. A and B: 400 
iterations (dotted line), 650 iterations (dashed line), 4100 iterations (solid line). 

4 Hebbian Learning: Development of Modularity 

The presence of collective excitations in the network dynamics enables the develop­
ment of modular structures in both the afferent and lateral connection patterns via 
Hebbian learning. Due to space limitations, we present simulation results only for 
the nonlinear shunting modeL We focus on this model since it has both afferent and 
lateral plastic connections and thus develops both afferent and lateral modular con­
nectivities. The other models do not have plastic lateral connections and develop 
only afferent connectivity modules. A more detailed account of all simulations is 
given in Chernjavsky and Moody (1990) . 

In our networks, the plastic excitatory connection values are restricted to the range 
W E [0,1]. The homogeneous initial conditions for all connection values are W = 
0.5. We have considered several variants of Hebbian learning. For the simulations 
we report here, however, we use only the simple Hebb rule with decay: 

d 
iH bb- w. .. = M ·N· - f3 

e dt 'J 'J 
(5) 

where Mi and N j are the post- and pre-synaptic activities respectively and f3 is 
the decay constant chosen to be approximately equal to the expected value M N 
averaged over the whole network. This choice of f3 makes the Hebb similar to the 
covariance type rule of Sejnowski (1977). iHebb is the timescale for learning. 

The simulation results illustrated in figure 4 are of one dimensional networks with 
64 units per layer. In these simulations, the units and connections illustrated are 



140 Chernjavsky and Moody 

intended to represent a continuum. The connection densities for afferent and lat­
eral excitatory connections were chosen to be gaussian with a maximum fan-out 
of 9 lattice units. The inhibitory connection density had a maximum fan-in of 19 
lattice units and had a symmetric bimodal shape. The sigmas of the excitatory and 
inhibitory fan-ins were respectively 1.4 and 2.1 (short-range excitation and longer 
range inhibition). The linear excitatory units had f = 1 and () = 0, while the 
sigmoidal inhibitory units had f = 0.125 and () = 0.5. 

The input activations were uniform random values in the range [0,1]. The input 
activations were spatially and temporally uncorrelated. Each input pattern was 
presented for only one dynamical relaxation time of the network (10 timesteps). 

The following adaptation rate parameters were used: dynamical relaxation rate 
Td- 1 = 0.1, learning rate Tii!bb = 0.01, weight decay constant f3 = 0.125. 
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