
An Efficient Implementation of the Back-propagation Algorithm 801

A n Efficient Implementation of
the Back-propagation Algorithm on

the Connection Machine CM-2

Xiru Zhang! Michael Mckenna Jill P. Mesirov David L. Waltz
Thinking Machines Corporation

245 First Street, Cambridge, MA 02142-1214

ABSTRACT

In this paper, we present a novel implementation of the widely used
Back-propagation neural net learning algorithm on the Connection
Machine CM-2 - a general purpose, massively parallel computer
with a hypercube topology. This implementation runs at about 180
million interconnections per second (IPS) on a 64K processor CM-
2. The main interprocessor communication operation used is 2D
nearest neighbor communication. The techniques developed here
can be easily extended to implement other algorithms for layered
neural nets on the CM-2, or on other massively parallel computers
which have 2D or higher degree connections among their processors.

1 Introduction

High-speed simulation of large artificial neural nets has become an important tool
for solving real world problems and for studying the dynamic behavior of large
populations of interconnected processing elements [3, 2]. This work is intended to
provide such a simulation tool for a widely used neural net learning algorithm - the
Back-propagation (BP) algorithm.[7]

The hardware we have used is the Connection Machine® CM-2.2 On a 64K pro­
cessor CM-2 our implementation runs at 40 million Weight Update Per Second

1 This author is also a graduate student at Computer Science Department, Brandeis University,
Waltham, MA 02254-9110.

2 Connection Machine is a registered trademark of Thinking Machines Corporation.

802 Zhang, Mckenna, Mesirov and Waltz

(WUPS)3 for training, or 180 million Interconnection Per Second (IPS) for forward­
pass, where IPS is defined in the DARPA NEURAL NETWORK STUDY [2] as "the
number of multiply-and-add operations that can be performed in a second" [on a
Back-propagation network). We believe that the techniques developed here can be
easily extended to implement other algorithms for layered neural nets on the CM-2,
or other massively parallel machines which have 2D or higher degree connections
among their processors.

2 The Connection Machine

The Connection Machine CM-2 is a massively parallel computer with up to 65,536
processors. Each processor has a single-bit processing unit and 64K or 256K bits
of local RAM. The processors run in SIMD mode. They are connected in an n­

cube topology, which permits highly efficient n dimensional grid communications.
The system software also provides scan and spread operations - e.g., when n·m
processors are connected as an n x m 2D grid, the summation (product, max,
etc.) of a "parallel variable" value in all the processors on a row of the grid4 takes
only O(logm) time. It is possible to turn off any subset of the processors so that
instructions will only be performed by those processors that are currently active.
On the CM-2, every 32 processors share a floating point processing unit; and a 32
bit number can be stored across 32 processors (Le., one bit per processor). These
32 processors can each access this 32-bit number as if it were stored in its own
memory. This is a way of sharing data among processors locally. The CM-2 uses
a conventional computer such as a SUN-4, VAX or Symbolics Lisp Machine as a
front-end machine. Parallel extensions to the familiar programming languages LISP,
C, and FORTRAN, via the front-end, allow the user to program the Connection
Machine and the front-end system.

3 The Back-propagation Algorithm

The Back-propagation [7] algorithm works on layered, feed-forward networks (BP
net for short in the following discussion), where the processing units are arranged in
layers - there are an input layer, an output layer, and one or more "hidden layers"
(layers between the input and output layers). A BP net computes its output in
the following fashion: first an input pattern is set as the output of the units at the
input layer; then one layer at a time, from the input to hidden to output layer,
the units compute their outputs by applying an activation function to the weighted
sum of their inputs (which are the outputs of the unit at the lower layer(s) that are
connected to them}. The weights come from the links between the units.

The Back-propagation algorithm "trains" a BP net by adjusting the link weights
of the net using a set of "training examples." Each training example consists of

3 This includes the time required to read in the input pattern, propagate activation forward
through the network, read in the ideal output pattern, propagate the error signal backward through
the network, compute the weight changes, and change the weights.

t That is, to add together one value from each processor on a row of the grid and distribute
the sum into all the processors on the same row .

An Efficient Implementation or the Back-propagation Algorithm 803

Output Layer

Hidden Layer

Input Layer

o • • • J • • • m-1

Figure 1: A 3-layer, fully-connected Back-propagation network that has the same num­
ber (m) of nodes at each layer.

an input pattern and an ideal output pattern that the user wants the network to
produce for that input. The weights are adjusted based on the difference between
the ideal output and the actual output of the net. This can be seen as a gradient
descen t process in the weight space.

After the training is done, the BP net can be applied to inputs that are not in the
set of training examples. For a new input pattern IP, the network tends to produce
an output similar to the training example whose input is similar to IP. This can be
used for interpolation, approximation, or generalization from examples depending
on the goal of the user [4].

4 The Implementation

In this section, we explain our implementation by presenting a simple example -
a three-layer fully-connected BP network that has the same number of nodes at
each layer. It is straightforward to extend it to general cases. For a more detailed
discussion, see reference [8].

4.1 A Simple Case

Figure 1 shows a fully-connected 3-layer BP network with m nodes on each layer.
In the following discussion, we will use Ni ,; to denote the jth node (from the left)
on layer i, i E {O, 1, 2}, j E {O, 1, ... , m - I}; ~,{ is the weight of the link from
node Nk,h to node Ni,j, and bi ,; is the error at node N i ,;.

First, assume we have exactly m processors. We store a "column" of the network
in each processor. That is, processor j contains nodes No,j, N1,j and N 2,j. It also

contains the weights of the links going into Nl,j and N2,; (i.e., W~"t and W{,t for

804 Zhang, Mckenna, Mesirov and Waltz

Link
Weigh ts
W 2•k

'.1

Link
Weigh
W ,·k

0.1

'5

ts

'5

'lr.t~#m{ ~

......... #

~~ ®~
{

1:1 - JIII..._

• • • • • • - -
@~ ~ - ... - =- -{ -• • • • • • - ~-

®~ ®A

...... 098 ©
...... ,,~-

.... ,,-
Output Nodes :

...... - /

f-

Hidden Nodes

Input Nodes -- I-
.G><E)

•

--

Multiply-accum ulate-rotate

Figure 2: The layout of the example network.

k E {o, 1, ... , m - I}). See Figure 2. The Back-propagation algorithm consists
of three steps: (1) forward pass to compute the network output; (2) backward
propagation to compute the errors at each node; and (3) weight update to adjust
the weights based on the errors. These steps are implemented as follows:

4.1.1 Forward Pass: Output(Ni •j) = F(2:;;';ol Wii~l.k ·Output(Ni_1•k))

We implement forward pass as follows:

1. Set the input node values; there is one input node per processor.

2. In each processor, multiply the input node value by the link weight between the
input node and the hidden node that is in the same processor; then accumulate
the product in the hidden node.

3. Rotate the input node values - each processor sends its input node value to
its nearest left neighbor processor, the leftmost processor sends its value to
the rightmost processor; i.e., do a left-circular-shift.

4. Repeat the multiply-accumulate-rotate cycles in the above two steps (2-3) m

times; every hidden node N1.j will then contain 2:;;;01 W~!k ·Output(NO.k)'
Now apply the activation function F to that sum. (See Figure 2.)

5. Repeat steps 2-4 for the output layer, using the hidden layer as the input.

An Efficient Implementation of the Back-propagation Algorithm 80S

4.1.2 Backward Propagation

For the output layer, 62,k, the error at each node N2,k, is computed by

62,k = Output(N2,k) . (1 - Output(N2,k)) . (Target(N2,k) - Output(N2,k)),

where Target(N2,k) is the ideal output for node N 2,k. This error can be computed
in place, i.e., no inter-processor communication is needed. For the hidden layer,

61,; = Output(N1,;) • (1 - Output (N1,;)) • E:=-ol w;,t . 62,k

To compute E:;OI w;,t . 62,k for the hidden nodes, we perform a multiply­
accumulate-rotate operation similar to the forward pass, but from the top down.
Notice that the weights between a hidden node and the output nodes are in differ­
ent processors. So, instead of rotating 62,k 's at the output layer, we rotate the partial
sum of products for the hidden nodes: at the beginning every hidden node N 1,j has
an accumulator A; with initial value = 0 in processor j. We do a left-circular-shift

on the Aj's. When Aj moves to processor k, we set Aj ~ Aj + W12,jk • 62,k. After

m rotations, Aj will return to processor j and its value will be E:=-OI W1
2,jk • 62 ,k.

4.1.3 Weight Update: ~W~:{ = T}. 6i ,j .Output(Nk,h)

~ W~:{ is the weight increment for W~:{, T} is the "learning rate" and 6i,i is the error
for node Ni,;, which is computed in the backward propagation step and is stored in
processor j. The weight update step is done as follows:

1. In each processor j, for the weights between the input layer and hidden layer,
1 . 1 .

compute weight update ~Wo,'~ = T}. 61 ,j . Output(No,k),S and add ~Wo,'~ to
w.1,j .6

O,k ,

2. Rotate the input node values as in step 3 of the forward pass.

3. Repeat the above two steps m times, until all the weights between the input
layer and the hidden layer are updated.

4. Do the above for weights between the hidden layer and the output layer also.

We can see that the basic operation is the same for all three steps of the Back­
propagation algorithm, i.e., multiply-accumulate-rotate. On the CM-2, multiply,
add (for accumulate) and circular-shift (for rotate) take roughly the same amount
of time, independent of the size of the machine. So the CM-2 spends only about
1/3 of its total time doing communication in our implementation.

6 Initially k = j, but the input node values will be rotated around in later steps, so k '# j in
general.

6 W;"t is in the sa.m.e processor as ~ W~"t - all the weights going into node N1 ,] are in processor

j. Also we can accumulate ~ W~:t for several training patterns instead of updating W::t every

time. We can also keep the previous weight change and add a "momentum" term here. (Our
implementation actually does all these. They are omitted here to simplify the explanation of the
basic ideas.)

806 Zhang, Mckenna, Mesirov and Waltz

4.2 Replication of Networks

Usually, there are more processors on the CM-2 than the width of a BP network.
Suppose the network width is m and there are n·m processors; then we make n copies
of the network on the CM-2, and do the forwa.rd pass and backward propagation
for different training patterns on each copy of the network. For the weight update
step, we can sum up the weight changes from different copies of the network (i.e.
from different training patterns), then update the weights in all the copies by this
sum. This is equivalent to updating the weights after n training patterns on a single
copy of the BP network.

On the CM-2, every 32 processors can share the same set of data (see section 2).
We make use of this feature and store the BP network weights across sets of 32
processors. Thus each processor only needs to allocate one bit for each weight.
Also, since the weight changes from different training patterns are additive, there
is no need to add them up in advance - each copy of the network can update (add
to) the weights separately, as long as no two or more copies of the network update
the same weight at the same time. (Our implementation guarantees that no such
weight update conflict can occur.) See Figure 3.

We call the 32 copies of the network that share the same set of weights a block.
When the number of copies n > 32, say n = 32 . q, then there will be q blocks
on the CM-2. We need to sum up the weight changes from different blocks before
updating the weights in each block. This summation takes a very small portion of
the total running time (much less than 1%). So the time increase can usually be
ignored when there is more than one block.7 Thus, the implementation speeds up
essentially linearly as the number of processors increases.

5 An Example: Character Image Recovery

In this example, a character, such as A, is encoded as a 16 x 16 pixel array. A
3-layer fully-connected network with 256 input nodes, 128 hidden nodes and 256
output nodes is trained with 64 character pixel arrays, each of which is used both
as the input pattern and the ideal output pattern. After the training is done
(maximum_error < 0.15),8 some noisy character images are fed into the network.
The network is then used to remove the noise (to recover the images). We can also
use the network recursively - to feed the network output back as the input.

Figure 4a shows the ideal outputs (odd columns) and the actual outputs (even
columns) of the network after the training. Figure 4b shows corrupted character
image inputs (odd columns) and the recovered images (even columns). The cor­
rupted inputs have 30% noise, i.e., 30% of the pixels take random values in each
image. We can see that most of the characters are recovered.

7The summation is done using the scan and spread operations (see section 2), so its time
increases only logarithmically in proportion to the number of blocks. Usually there are only a few
blocks, thus we could use the nearest neighbor communication here instead without much loss of
performance.

8 This training took about 400 cycles.

An Efficient Implementation of the Back-propagation Algorithm 807

Parallel weight-update
{\

} Shared
weights

8 0 0
I:'I'J ~- ~ -,.

~ -Output Nodes (;!IiI · •
} Shared · (. loS

0 0 0 we ights

- -,...t lUI · · ,
'-Y.:II ,

--:-Input Nodes Network N ~ - -
,

'\. /
,

\

Network 2 v \
\

m Network 1

Figure 3: Replication of a BP network and parallel update of network weights. In the
weigbt update step, the nodes in each copy of the BP network loop through the weights
going into them in the following fashion: in the first loop, Network 1 updates the first
weight, Network 2 updates the second weight ... Network N updates the Nth weight; in
general, in the Jth loop, Network I updates [M od(I + J, N)]th weight . In this way, it is
guaranteed that no two networks update the same weight at the same time. When the
total number of weights going into each node is greater than N, we repeat the above loop.

AAaaBBbbTTttUUuu
CGcoDDddVVvvXXXX
EEeeFFffYYyyZZzz
GG9gHHhh00112233
I I i l' KKkk44556677
LLII NNnh8899«»
OOOOPRPP??$$AA&&
RRrrSSss**++==-"':'

(a) (b)

Figure 4: (a) Ideal outputs (in odd columns) and the actual after-training outputs (in
even columns) of a network with 256 input nodes, 128 hidden nodes and 256 output nodes
trained with character images. (b) Noisy inputs (in odd columns) and the corresponding
outputs ("cleaned-up" images) produced by the network.

808 Zhang, Mckenna, Mesirov and Waltz

Computer

CM-2
Cray X-MP
WARP (10)
ANZA plus
TRW MK V (16)
Butterfly (64)
SAle SIGMA-l
TIOdyessy
Convex C-1
VAX 8600
SUN 3
Symbolics 3600

BP performance (IPS)

180 M
50 M
17 M (WUPS)
10 M
10 M
8M
5-8 M
5M
3.6 M
2M
250 K
35 K

Table 1: Comparison of BP implementations on different computers.

In this example, we used a 4K processor CM-2. The BP network had 256 x 128 +
128x 256 = 65,536 weights. We made 64 copies of the network on the CM-2, so there
were 2 blocks. One weight update cycle9 took 1.66 seconds. Thus the performance
is: (65,536 x 64) -;- 1.66 ::::.:: 2,526,689 weight update per second (WUPS). Within
the 1.66 seconds, the communication between the two blocks took 0.0023 seconds.
If we run a network of the same size on a 64K processor CM_2,10 there will be
32 blocks, and the inter-block communication will take 0.0023 x I~ogg 322 = 0.0115

second. 11 And the overall performance will be:

(16 x 65,536 x 64) -;- (1.66 + 0.0115) = 40,148,888 WUPS

Forward-pass took 22% of the total time. Thus if we ran the forward pass alone,
the speed would be 40,148,888 -;- 0.22::::.:: 182,494,940 IPS.

6 Comparison With Other Implementations

This implementation of the Back-propagation algorithm on the CM-2 runs much
more efficiently than previous CM implementations (e.g., see [1], [6]). Table 1 lists
the speeds of Back-propagation on different machines (obtained from reference [2]
and [5]).

9 See footnote 3 for definition.
10 Assume we have enough training patterns to fill up the CM-2.
11 We use scan and spread operations here, so the time used increases logrithmatically.

An Efficient Implementation of the Back-propagation Algorithm 809

7 Summary

In this paper, we have shown an example of efficient implementation of neural net
algorithms on the Connection Machine CM-2. We used Back-propagation because it
is the most widely implemented, and many researchers have used it as a benchmark.
The techniques developed here can be easily adapted to implement other algorithms
on layered neural nets.

The main communication operation used in this work is the 2D grid nearest neighbor
communication. The facility for a group of processors on the CM-2 to share data is
important in reducing the amount of space required to store network weights and
the communication between different copies of the network. These points should be
kept in mind when one tries to use the techniques described here on other machines.

The main lesson we learned from this work is that to implement an algorithm
efficiently on a massively parallel machine often requires re-thinking of the algorithm
to explore the parallel nature of the algorithm, rather than just a straightforward
translation of serial implementations.

Acknowledgement

Many thanks to Alex Singer, who read several drafts of this paper and helped
improve it. Lennart J ohnsson helped us solve a critical problem. Discussions with
other members of the Mathematical and Computational Sciences Group at Thinking
Machines Corporation also helped in many ways.

References

[1] Louis G. Ceci, Patrick Lynn, and Phillip E. Gardner. Efficient Distribution of Back­
Propagation Models on Parallel Architectures. Tech. Report CU-CS-409-88, Dept . of
Computer Science, University of Colorado, September 1988.

[2] MIT Lincoln Laboratory. Darpa Neural Network Study. Final Report, July 1988.

[3] Special Issue on Artificial Neural Systems. IEEE Computer, March 1988.

[4] Tomaso Poggio and Federico Girosi. A Theory of Networks for Approximation and
Learning. A.I.Memo 1140, MIT AI Lab, July 1989.

[5] Dean A. Pomerleau, George L. Gusciora David S. Touretzky, and H. T. Kung. Neural
Network Simulation at Warp Speed: How We Got 17 Million Connections Per Second.
In IEEE Int. Conf. on Neural Network&, July 1988. San Diego, CA.

[6] Charles R. Rosenberg and Guy Blelloch. An Implementation of Network Learning on
the Connection Machine. In Proceeding& of the Tenth International Joint Conference
on Artificial Intelligence, Milan, Italy, 1987.

[7] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations
by error propagation. In Parallel Di&tributed Proceuing, chapter 8. MIT Press, 1986.

[8] Xiru Zhang, Michael Mckenna, Jill P. Mesirov, and David L. Waltz. An Efficient
Implementation of The Back-Propagation Algorithm On the Connection Machine CM-
2. Technical Report RL-89-1, Thinking Machines Corp., 245 First St. Cambridge, MA
02114, 1989.

