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ABSTRACT 

In this paper, we present a novel implementation of the widely used 
Back-propagation neural net learning algorithm on the Connection 
Machine CM-2 - a general purpose, massively parallel computer 
with a hypercube topology. This implementation runs at about 180 
million interconnections per second (IPS) on a 64K processor CM-
2. The main interprocessor communication operation used is 2D 
nearest neighbor communication. The techniques developed here 
can be easily extended to implement other algorithms for layered 
neural nets on the CM-2, or on other massively parallel computers 
which have 2D or higher degree connections among their processors. 

1 Introduction 

High-speed simulation of large artificial neural nets has become an important tool 
for solving real world problems and for studying the dynamic behavior of large 
populations of interconnected processing elements [3, 2]. This work is intended to 
provide such a simulation tool for a widely used neural net learning algorithm - the 
Back-propagation (BP) algorithm.[7] 

The hardware we have used is the Connection Machine® CM-2.2 On a 64K pro­
cessor CM-2 our implementation runs at 40 million Weight Update Per Second 

1 This author is also a graduate student at Computer Science Department, Brandeis University, 
Waltham, MA 02254-9110. 

2 Connection Machine is a registered trademark of Thinking Machines Corporation. 
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(WUPS)3 for training, or 180 million Interconnection Per Second (IPS) for forward­
pass, where IPS is defined in the DARPA NEURAL NETWORK STUDY [2] as "the 
number of multiply-and-add operations that can be performed in a second" [on a 
Back-propagation network). We believe that the techniques developed here can be 
easily extended to implement other algorithms for layered neural nets on the CM-2, 
or other massively parallel machines which have 2D or higher degree connections 
among their processors. 

2 The Connection Machine 

The Connection Machine CM-2 is a massively parallel computer with up to 65,536 
processors. Each processor has a single-bit processing unit and 64K or 256K bits 
of local RAM. The processors run in SIMD mode. They are connected in an n­

cube topology, which permits highly efficient n dimensional grid communications. 
The system software also provides scan and spread operations - e.g., when n·m 
processors are connected as an n x m 2D grid, the summation (product, max, 
etc.) of a "parallel variable" value in all the processors on a row of the grid4 takes 
only O(logm) time. It is possible to turn off any subset of the processors so that 
instructions will only be performed by those processors that are currently active. 
On the CM-2, every 32 processors share a floating point processing unit; and a 32 
bit number can be stored across 32 processors (Le., one bit per processor). These 
32 processors can each access this 32-bit number as if it were stored in its own 
memory. This is a way of sharing data among processors locally. The CM-2 uses 
a conventional computer such as a SUN-4, VAX or Symbolics Lisp Machine as a 
front-end machine. Parallel extensions to the familiar programming languages LISP, 
C, and FORTRAN, via the front-end, allow the user to program the Connection 
Machine and the front-end system. 

3 The Back-propagation Algorithm 

The Back-propagation [7] algorithm works on layered, feed-forward networks (BP 
net for short in the following discussion), where the processing units are arranged in 
layers - there are an input layer, an output layer, and one or more "hidden layers" 
(layers between the input and output layers). A BP net computes its output in 
the following fashion: first an input pattern is set as the output of the units at the 
input layer; then one layer at a time, from the input to hidden to output layer, 
the units compute their outputs by applying an activation function to the weighted 
sum of their inputs (which are the outputs of the unit at the lower layer(s) that are 
connected to them}. The weights come from the links between the units. 

The Back-propagation algorithm "trains" a BP net by adjusting the link weights 
of the net using a set of "training examples." Each training example consists of 

3 This includes the time required to read in the input pattern, propagate activation forward 
through the network, read in the ideal output pattern, propagate the error signal backward through 
the network, compute the weight changes, and change the weights. 

t That is, to add together one value from each processor on a row of the grid and distribute 
the sum into all the processors on the same row . 
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Figure 1: A 3-layer, fully-connected Back-propagation network that has the same num­
ber (m) of nodes at each layer. 

an input pattern and an ideal output pattern that the user wants the network to 
produce for that input. The weights are adjusted based on the difference between 
the ideal output and the actual output of the net. This can be seen as a gradient 
descen t process in the weight space. 

After the training is done, the BP net can be applied to inputs that are not in the 
set of training examples. For a new input pattern IP, the network tends to produce 
an output similar to the training example whose input is similar to IP. This can be 
used for interpolation, approximation, or generalization from examples depending 
on the goal of the user [4]. 

4 The Implementation 

In this section, we explain our implementation by presenting a simple example -
a three-layer fully-connected BP network that has the same number of nodes at 
each layer. It is straightforward to extend it to general cases. For a more detailed 
discussion, see reference [8]. 

4.1 A Simple Case 

Figure 1 shows a fully-connected 3-layer BP network with m nodes on each layer. 
In the following discussion, we will use Ni ,; to denote the jth node (from the left) 
on layer i, i E {O, 1, 2}, j E {O, 1, ... , m - I}; ~,{ is the weight of the link from 
node Nk,h to node Ni,j, and bi ,; is the error at node N i ,;. 

First, assume we have exactly m processors. We store a "column" of the network 
in each processor. That is, processor j contains nodes No,j, N1,j and N 2,j. It also 

contains the weights of the links going into Nl,j and N2,; (i.e., W~"t and W{,t for 
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Figure 2: The layout of the example network. 

k E {o, 1, ... , m - I}). See Figure 2. The Back-propagation algorithm consists 
of three steps: (1) forward pass to compute the network output; (2) backward 
propagation to compute the errors at each node; and (3) weight update to adjust 
the weights based on the errors. These steps are implemented as follows: 

4.1.1 Forward Pass: Output(Ni •j ) = F(2:;;';ol Wii~l.k ·Output(Ni_1•k)) 

We implement forward pass as follows: 

1. Set the input node values; there is one input node per processor. 

2. In each processor, multiply the input node value by the link weight between the 
input node and the hidden node that is in the same processor; then accumulate 
the product in the hidden node. 

3. Rotate the input node values - each processor sends its input node value to 
its nearest left neighbor processor, the leftmost processor sends its value to 
the rightmost processor; i.e., do a left-circular-shift. 

4. Repeat the multiply-accumulate-rotate cycles in the above two steps (2-3) m 

times; every hidden node N1.j will then contain 2:;;;01 W~!k ·Output(NO.k)' 
Now apply the activation function F to that sum. (See Figure 2.) 

5. Repeat steps 2-4 for the output layer, using the hidden layer as the input. 
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4.1.2 Backward Propagation 

For the output layer, 62,k, the error at each node N2,k, is computed by 

62,k = Output(N2,k) . (1 - Output(N2,k)) . (Target(N2,k) - Output(N2,k)), 

where Target(N2,k) is the ideal output for node N 2,k. This error can be computed 
in place, i.e., no inter-processor communication is needed. For the hidden layer, 

61,; = Output(N1,;) • (1 - Output (N1,; )) • E:=-ol w;,t . 62,k 

To compute E:;OI w;,t . 62,k for the hidden nodes, we perform a multiply­
accumulate-rotate operation similar to the forward pass, but from the top down. 
Notice that the weights between a hidden node and the output nodes are in differ­
ent processors. So, instead of rotating 62,k 's at the output layer, we rotate the partial 
sum of products for the hidden nodes: at the beginning every hidden node N 1,j has 
an accumulator A; with initial value = 0 in processor j. We do a left-circular-shift 

on the Aj's. When Aj moves to processor k, we set Aj ~ Aj + W12,jk • 62,k. After 

m rotations, Aj will return to processor j and its value will be E:=-OI W1
2,jk • 62 ,k. 

4.1.3 Weight Update: ~W~:{ = T}. 6i ,j .Output(Nk,h) 

~ W~:{ is the weight increment for W~:{, T} is the "learning rate" and 6i,i is the error 
for node Ni,;, which is computed in the backward propagation step and is stored in 
processor j. The weight update step is done as follows: 

1. In each processor j, for the weights between the input layer and hidden layer, 
1 . 1 . 

compute weight update ~Wo,'~ = T}. 61 ,j . Output(No,k),S and add ~Wo,'~ to 
w.1,j .6 

O,k , 

2. Rotate the input node values as in step 3 of the forward pass. 

3. Repeat the above two steps m times, until all the weights between the input 
layer and the hidden layer are updated. 

4. Do the above for weights between the hidden layer and the output layer also. 

We can see that the basic operation is the same for all three steps of the Back­
propagation algorithm, i.e., multiply-accumulate-rotate. On the CM-2, multiply, 
add (for accumulate) and circular-shift (for rotate) take roughly the same amount 
of time, independent of the size of the machine. So the CM-2 spends only about 
1/3 of its total time doing communication in our implementation. 

6 Initially k = j, but the input node values will be rotated around in later steps, so k '# j in 
general. 

6 W;"t is in the sa.m.e processor as ~ W~"t - all the weights going into node N1 ,] are in processor 

j. Also we can accumulate ~ W~:t for several training patterns instead of updating W::t every 

time. We can also keep the previous weight change and add a "momentum" term here. (Our 
implementation actually does all these. They are omitted here to simplify the explanation of the 
basic ideas.) 
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4.2 Replication of Networks 

Usually, there are more processors on the CM-2 than the width of a BP network. 
Suppose the network width is m and there are n·m processors; then we make n copies 
of the network on the CM-2, and do the forwa.rd pass and backward propagation 
for different training patterns on each copy of the network. For the weight update 
step, we can sum up the weight changes from different copies of the network (i.e. 
from different training patterns), then update the weights in all the copies by this 
sum. This is equivalent to updating the weights after n training patterns on a single 
copy of the BP network. 

On the CM-2, every 32 processors can share the same set of data (see section 2). 
We make use of this feature and store the BP network weights across sets of 32 
processors. Thus each processor only needs to allocate one bit for each weight. 
Also, since the weight changes from different training patterns are additive, there 
is no need to add them up in advance - each copy of the network can update (add 
to) the weights separately, as long as no two or more copies of the network update 
the same weight at the same time. (Our implementation guarantees that no such 
weight update conflict can occur.) See Figure 3. 

We call the 32 copies of the network that share the same set of weights a block. 
When the number of copies n > 32, say n = 32 . q, then there will be q blocks 
on the CM-2. We need to sum up the weight changes from different blocks before 
updating the weights in each block. This summation takes a very small portion of 
the total running time (much less than 1%). So the time increase can usually be 
ignored when there is more than one block.7 Thus, the implementation speeds up 
essentially linearly as the number of processors increases. 

5 An Example: Character Image Recovery 

In this example, a character, such as A, is encoded as a 16 x 16 pixel array. A 
3-layer fully-connected network with 256 input nodes, 128 hidden nodes and 256 
output nodes is trained with 64 character pixel arrays, each of which is used both 
as the input pattern and the ideal output pattern. After the training is done 
(maximum_error < 0.15),8 some noisy character images are fed into the network. 
The network is then used to remove the noise (to recover the images). We can also 
use the network recursively - to feed the network output back as the input. 

Figure 4a shows the ideal outputs (odd columns) and the actual outputs (even 
columns) of the network after the training. Figure 4b shows corrupted character 
image inputs (odd columns) and the recovered images (even columns). The cor­
rupted inputs have 30% noise, i.e., 30% of the pixels take random values in each 
image. We can see that most of the characters are recovered. 

7The summation is done using the scan and spread operations (see section 2), so its time 
increases only logarithmically in proportion to the number of blocks. Usually there are only a few 
blocks, thus we could use the nearest neighbor communication here instead without much loss of 
performance. 

8 This training took about 400 cycles. 
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Figure 3: Replication of a BP network and parallel update of network weights. In the 
weigbt update step, the nodes in each copy of the BP network loop through the weights 
going into them in the following fashion: in the first loop, Network 1 updates the first 
weight, Network 2 updates the second weight ... Network N updates the Nth weight; in 
general, in the Jth loop, Network I updates [M od(I + J, N)]th weight . In this way, it is 
guaranteed that no two networks update the same weight at the same time. When the 
total number of weights going into each node is greater than N, we repeat the above loop. 
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Figure 4: (a) Ideal outputs (in odd columns) and the actual after-training outputs (in 
even columns) of a network with 256 input nodes, 128 hidden nodes and 256 output nodes 
trained with character images. (b) Noisy inputs (in odd columns) and the corresponding 
outputs ("cleaned-up" images) produced by the network. 
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Computer 

CM-2 
Cray X-MP 
WARP (10) 
ANZA plus 
TRW MK V (16) 
Butterfly (64) 
SAle SIGMA-l 
TIOdyessy 
Convex C-1 
VAX 8600 
SUN 3 
Symbolics 3600 

BP performance (IPS) 

180 M 
50 M 
17 M (WUPS) 
10 M 
10 M 
8M 
5-8 M 
5M 
3.6 M 
2M 
250 K 
35 K 

Table 1: Comparison of BP implementations on different computers. 

In this example, we used a 4K processor CM-2. The BP network had 256 x 128 + 
128x 256 = 65,536 weights. We made 64 copies of the network on the CM-2, so there 
were 2 blocks. One weight update cycle9 took 1.66 seconds. Thus the performance 
is: (65,536 x 64) -;- 1.66 ::::.:: 2,526,689 weight update per second (WUPS). Within 
the 1.66 seconds, the communication between the two blocks took 0.0023 seconds. 
If we run a network of the same size on a 64K processor CM_2,10 there will be 
32 blocks, and the inter-block communication will take 0.0023 x I~ogg 322 = 0.0115 

second. 11 And the overall performance will be: 

(16 x 65,536 x 64) -;- (1.66 + 0.0115) = 40,148,888 WUPS 

Forward-pass took 22% of the total time. Thus if we ran the forward pass alone, 
the speed would be 40,148,888 -;- 0.22::::.:: 182,494,940 IPS. 

6 Comparison With Other Implementations 

This implementation of the Back-propagation algorithm on the CM-2 runs much 
more efficiently than previous CM implementations (e.g., see [1], [6]). Table 1 lists 
the speeds of Back-propagation on different machines (obtained from reference [2] 
and [5]). 

9 See footnote 3 for definition. 
10 Assume we have enough training patterns to fill up the CM-2. 
11 We use scan and spread operations here, so the time used increases logrithmatically. 
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7 Summary 

In this paper, we have shown an example of efficient implementation of neural net 
algorithms on the Connection Machine CM-2. We used Back-propagation because it 
is the most widely implemented, and many researchers have used it as a benchmark. 
The techniques developed here can be easily adapted to implement other algorithms 
on layered neural nets. 

The main communication operation used in this work is the 2D grid nearest neighbor 
communication. The facility for a group of processors on the CM-2 to share data is 
important in reducing the amount of space required to store network weights and 
the communication between different copies of the network. These points should be 
kept in mind when one tries to use the techniques described here on other machines. 

The main lesson we learned from this work is that to implement an algorithm 
efficiently on a massively parallel machine often requires re-thinking of the algorithm 
to explore the parallel nature of the algorithm, rather than just a straightforward 
translation of serial implementations. 
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