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We describe a model that can recognize two-dimensional shapes in 
an unsegmented image, independent of their orientation, position, 
and scale. The model, called TRAFFIC, efficiently represents the 
structural relation between an object and each of its component 
features by encoding the fixed viewpoint-invariant transformation 
from the feature's reference frame to the object's in the weights of a 
connectionist network. Using a hierarchy of such transformations, 
with increasing complexity of features at each successive layer, the 
network can recognize multiple objects in parallel. An implemen­
tation of TRAFFIC is described, along with experimental results 
demonstrating the network's ability to recognize constellations of 
stars in a viewpoint-invariant manner. 

1 INTRODUCTION 

A key goal of machine vision is to recognize familiar objects in an unsegmented 
image, independent of their orientation, position, and scale. Massively parallel 
models have long been used for lower-level vision tasks, such as primitive feature 
extraction and stereo depth. Models addressing "higher-level" vision have generally 
been restricted to pattern matching types of problems, in which much of the inherent 
complexity of the domain has been eliminated or ignored. 

The complexity of object recognition stems primarily from the difficult search re­
quired to find the correspondence between features of candidate objects and image 
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features. Images contain spurious features, which do not correspond to any object 
features; objects in an image may have missing or occluded features; and noisy 
measurements make it impossible to align object features to image features ex­
actly. These problems are compounded in realistic domains, where images are not 
segmented and normalized and the number of candidate objects is large. 

In this paper, we present a structured, general model of object recognition - called 
TRAFFIC (a loose acronym for "transforming feature instances") - that addresses 
these difficult problems through a combination of strategies. First, we directly build 
constraints on the spatial relationships between features of an object directly into 
the architecture of a connectionist network. We thereby limit the space of possible 
matches by constructing only plausible assignments of image features to objects. 
Second, we embed this construction into a hierarchical architecture, which allows 
the network to handle unsegmented, non-normalized images, and also allows for a 
wide range of candidate objects. Third, we allow TRAFFIC to discover the critical 
spatial relationships among features through training on examples of the target 
objects in various poses. 

2 MODEL HIGHLIGHTS 

The following sections outline the three fundamental aspects of TRAFFIC. For a 
more complete discussion of the details of TRAFFIC, see (Zemel, 1989). 

2.1 ENCODING STRUCTURAL RELATIONS 

The first key aspect of TRAFFIC concerns its encoding and use of the fixed spatial 
relations between a rigid object and each of its component features. If we assume 
that each feature has an intrinsic reference frame, then for a rigid object and a 
particular feature of that object, there is a fixed viewpoint-independent transfor­
mation from the feature's reference frame to the object's. This transformation can 
be used to predict the object's reference frame from the feature's. To recognize 
objects, TRAFFIC takes advantage of the fact that all features of the same object 
will predict the identical reference frame for that object (the "viewpoint consistency 
constraint" (Lowe, 1987)). 

Each reference frame transformation can be expressed as a matrix multiplication 
that is efficiently implemented in a connectionist network. Consider a two-layer 
network, with one layer containing units representing particular features, the other 
containing units representing objects. For two-dimensional shapes, each feature is 
described by a set of four instantiation units. These real-valued units represent 
the parameter values associated with the feature: (x,y)-position, orientation, and 
scale. The objects have a set of instantiation units as well. The units representing 
particular features are connected to the units representing each object containing 
that feature, thereby assigning each feature-object pair its own set of weighted 
connections. The fixed matrix that describes the transformation from the feature's 
intrinsic reference frame to the object's can be directly implemented in the set of 
weights connecting the instantiation units of the feature and the object. 
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We can describe any instantiation, or any transformation between instantiations, as 
a vector of four parameters. Let Pif = (xif' Yif, cif, s;,f) specify the refere:p.ce frame 
of the feature with respect to the image, where xif and Yif represent the coordinates 
of the feature origin relative to the image frame, cif and sif represent the scale and 
angle of the feature frame w.r.t. the image frame. Rather than encoding these 
values directly, cif represents the product of the scale and the cosine of the angle, 
while sif represesents the product of the scale and the sine of the angle. 1 Let Pio 

= (Xio, Yio, Ciol Sio), specify the reference frame of the object with respect to the 
image. Finally, let Pfo = (xfol Yfo, cfol sfo) specify the transformation from the 
reference frame of the object to that of the feature. 

Each of these sets of parameters can be placed into a transformation matrix which 
converts points in one reference frame to points in another. We can express Pif as 
the matrix Iif, a transformation from the feature frame to the image frame: 

Xif ] 
Yif 
1 

Likewise, we can express Pfo as the matrix Tfo, a transformation from the object 
to feature frame, and Pio as Iio, a transformation from the object to image frame. 
Because Tfo is fixed for a given feature-object pair and Iif is derived from the image, 
Iio can easily be computed by composing these two transforms: Iio = 1';,f Tf o. 

The four parameters underlying Iio can then be extracted, which results in the 
following four equations for Pio: 

Xio Ci,fX fo + Si,fYfo + Xif 

Yio -SifXfo + Ci,fYfo + Yi,f 

Cio Ci,fCfo - Si,fSfo 

Si,o Ci,fSfo + S;,fCfo 

This transformation is easily implemented in a network by connecting the units 
representing Pi,f to the units representing P;,o with the appropriate weights (Figure 
1). In this manner, TRAFFIC directly encodes the reference frame transformation 
from a feature to an object in the connections from the set of units representing 
the feature's reference frame to units representing the object's frame. The speci­
fication of an object's reference frame can therefore be derived directly from each 
of its component features on the basis of the structural relationship between the 
feature and the object. Because each feature of an object should predict the same 
reference frame parameters for the object, we can determine whether the object is 
really present in the image by checking to see if the various features make identical 

1 We represent angles by their sines and cosines to avoid the discontinuities involved in repre­
senting orientation by a single number and to eliminate the non-linear step of computing sin Bil 
from Bi/. Note that we represent the four degrees of freedom in the instantiation parameters using 
four units; a neurally plausible extension to this scheme which does not require single units with 
arbitrary precision could allocate a pool of units to each of these parameters. 
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Figure 1: The matrix TJo is a fixed coordinate transformation from the reference 
frame of feature f to the reference frame of object o. This figure shows how TJo 
can be built into the weights connecting the object-instantiation units and the 
feature-instantiation units. 

predictions. In Section 2.3 we discuss how the object instantiation is formed in 
cases where the object parameters predicted by the features do not agree perfectly. 

2.2 FEATURE ABSTRACTION HIERARCHY 

TRAFFIC recursively extends the notion of reference frame ~ransformations be­
tween features and objects in a hierarchical architecture. It is impractical to hope 
that any network will be able to directly map low-level input features to complex 
objects. The input features must be simple enough to be easily extracted from 
images without relying on sophisticated segmentation and interpretation. If they 
are simple, however, they will be unable to uniquely predict the object's reference 
frame, since a complex object may contain many copies of a single simple feature. 

To address this problem, we adopt a hierarchical approach, introducing several 
layers of intermediate features between the input and output layers. In each layer, 
several features are grouped together to form an 'object' in the layer above; this 
'object' then serves as a feature for 'objects' in the next layer. The lowest layer 
contains simple features, such as edges and various corner types. The objects to be 
recognized appear at the top of the hierarchy - the output layer of the network. 

This composition hierarchy builds up a description of objects by selectively grouping 
sets of features, forming an increasingly abstract set of features. The power of this 
representation comes in the sharing of a set of features in one layer by objects in 
the layer above. 

To represent multiple features of the same type simultaneously, we carve up the 
image into spatially-contiguous regions, each allowing the representation of one 
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instance of each feature. The network can thus represent several instances of a 
feature type simultaneously, provided they lie in different regions. 

We tailor the regions to the abstraction hierarchy as follows. In the lowest layers, 
the features are simple and numerous, so we need many regions, but with only a 
few feature types per region. In upper layers of the hierarchy, the features become 
increasingly complex and span a larger area of the image; the number of feature 
types increases and the regions become larger, while the instantiation units retain 
accurate viewpoint information. In the highest layer, there is a single region, and it 
spans the entire original image. At this level, the network can recognize and specify 
parameters for a single instance of each object it has been trained on. 

2.3 FORMING OBJECT HYPOTHESES 

The third key aspect of TRAFFIC is its method of combining information from 
features to determine both an object's reference frame and an overall estimate of 
the likelihood that the object is actually present in the image. This likelihood, 
called the object's confidence, is represented by an additional unit associated with 
each object. 

Each feature individually predicts the object's reference frame, and TRAFFIC forms 
a single vector of object instantiation-parameters by averaging the predicted instan­
tiations, weighted by the confidence of their corresponding features. 2 Every set of 
units representing an object is sensitive to feature instances appearing in a fixed 
area of the image - the receptive field of the object. The confidence of the object 
is then a function of the confidence of the features lying in its receptive field, as 
well as the variance of their predictions, because low variance indicates a highly 
self-consistent object instantiation. 

Once the network has been defined - the regions, receptive fields, and feature 
types specified at each level, and the reference frame transformations encoded in 
the weights - recognition occurs in a single bottom-up pass through the network. 
TRAFFIC accepts as input a set of simple features and a description of their pose 
in the image. At each layer in turn, the network forms many candidate object 
instantiations from the set of feature instantiations in the layer below, and then 
suppresses the object instantiations that are not consistently predicted by several 
of their component features. At the output level of the network, the confidence 
unit of each object describes the likelihood that that object is in the image, and its 
instantiation units specify its pose. 

3 IMPLEMENTING TRAFFIC 

The domain we selected for study involves the recognition of constellations of stars. 
This problem has several interesting properties: the image is by nature unseg-

2This averaging technique contains an implicit assumption that the maximum expected devia­
tion of a prediction from the actual value is a function of the number of features, and that there 
will always be enough good values to smooth out any large deviations. We are currently exploring 
improved methods of forming object hypotheses. 
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mented; there are many false partial matches; no bottom-up cues suggest a natu­
ral frame of reference; and it requires the ability to perform 2-D transformation­
invariant recognition. 

Each image contains the set of visible stars in a region of the sky. The input 
to TRAFFIC is a set of features that represent triples of stars in particular con­
figurations. This input is computed by first dividing the image into regions and 
extracting every combination of three stars within each region. The star triplets 
(more precisely, the inner angles of the triangles formed by the triplets) are fed 
into an unsupervised competitive-learning network whose task is to categorize the 
configuration as one of a small number of types - the primitive feature types for 
the input layer of TRAFFIC. 

The architecture we implemented had an input layer, two intermediate layers, and 
an output layer.3 Eight constellations were to be recognized, each represented by a 
single unit in the output layer. We used a simple unsupervised learning scheme to 
determine the feature types in the intermediate layers of the hierarchy, working up 
sequentially from the input layer. During an initial phase of training, the system 
samples many regions of the sky at random, creating features at one layer corre­
sponding to the frequently occurring combinations of features in the layer below. 
This scheme forms flexible intermediate representations tailored to the domain, but 
not hand-coded for the particular object set. 

This sampling method determined the connection weights through the intermediate 
layers of the network. Back propagation was then used to set the weights between 
the penultimate layer and the output layer. 4 The entire network could have been 
trained using back propagation, but the combined unsupervised-supervised learning 
method we used is much simpler and quicker, and worked well for this problem. 

4 EXPERIMENTAL RESULTS 

We have run several experiments to test the main properties ofthe network, detailed 
further in (Zemel, 1989). Each image used in training and testing contained one of 
the eight target constellations, along with other nearby stars. 

The first experiment tested the basic recognition capability of the system, as well as 
its ability to learn useful connections between objects and features. The training set 
consisted of a single view of each constellation. The second experiment examined 
the network's ability to recognize a constellation independent of its position and 
orientation in the image. We expanded the set of training images to include four 
different views of each of the eight constellations, in various positions and orienta­
tions. The test set contained two novel views of the eight constellations. In both 
experiments, the network quickly « 150 epochs) learned to identify the target ob­
ject. Learning was slower in the second experiment, but the network performance 

3The details of the network, such as the number of regions and feature types per layer, the 
number of connections, etc., are discussed in (Zemel, 1989). 

4 In this implementation, we used a less efficient method of encoding the transformations than 
the method discussed in Section 2.1, but both versions perform the same transformations. 



272 Zemel, Mozer and Hinton 

was identical for the training and testing images. 

The third experiment tested the network's ability not only to recognize an instance 
of a constellation, but to correctly specify its reference frame. In most simulations, 
the network produced a correct description of the target object instantiation across 
the training and testing images. 

A final experiment confirmed that the network did not recognize an instance of an 
object when the features of the object were present in the input but were not in the 
correct relation to one another. The confidence level of the target object decreased 
proportionately as random noise was added to the instantiation parameters of input 
features. This shows that the upper layers of the network perform the important 
function of detecting the spatial relations of features from non-local areas of the 
Image. 

5 RELATED WORK 

TRAFFIC resembles systems based on the Hough transform (Ballard, 1981; Hin­
ton, 1981) in that evidence from various feature instances is combined using the 
viewpoint consistency constraint. However, while these Hough transform models 
need a unit for every possible viewpoint of an object, TRAFFIC reduces hardware 
requirements by using real-valued units to represent viewpoints.s TRAFFIC also 
resembles the approach of (Mjolsness, Gindi and Anandan, 1989), which relies on a 
large optimization search to simultaneously find the best set of object instantiations 
and viewpoint parameters to fit the image data. The TRAFFIC network carries 
out a similar type of search, but the limited connectivity and hierarchical architec­
ture of the network constrains the search. The feature abstraction hierachy used 
in TRAFFIC is common to many recognition systems. The pattern recognition 
technique known as hierarchical synthesis (Barrow, Ambler and Burstall, 1972), 
employs a similar architecture, as do several connectionist models (Denker et al., 
1989; Fukushima, 1980; Mozer, 1988). Each of these systems achieve position­
and rotation-invariance by removing position information in the upper layers of the 
hierarchy. The TRAFFIC hierarchy, on the other hand, maintains and manipu­
lates accurate viewpoint information throughout, allowing it to consider relations 
between features in non-local areas of the image. 

6 CONCLUSIONS AND FUTURE WORK 

The experiments demonstrate that TRAFFIC is capable of recognizing a limited 
set of two-dimensional objects in a viewpoint-independent manner based on the 
structural relations among components of the objects. We are currently testing 
the network's ability to perform multiple-object recognition and its robustness with 
respect to noise and occlusion. We are also currently developing a probabilistic 
framework for combining the various predictions to form the most likely object 

5Many other recognition systems, such as Lowe's SCERPO system (1985), represent object 
reference frame information as sets of explicit parameters. 
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instantiation hypothesis. This probabilistic framework may increase the robustness 
of the model and allow it to handle deviations from object rigidity. 

Another extension to TRAFFIC we are currently exploring concerns the creation of 
a pre-processing network to specify reference frame information for input features 
directly from a raw image. We train this network using an unsupervised learn­
ing method based on the mutual information between neighboring image patches 
(Becker and Hinton, 1989). Our aim is to apply this method to learn the mappings 
from features to objects throughout the network hierarchy. 
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