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Abstract 

The dark-adapted visual system can count photons wit h a reliability lim­
ited by thermal noise in the rod photoreceptors - the processing circuitry 
bet.ween t.he rod cells and the brain is essentially noiseless and in fact may 
be close to optimal. Here we design an optimal signal processor which 
estimates the time-varying light intensit.y at the retina based on the rod 
signals. \Ve show that. the first stage of optimal signal processing involves 
passing the rod cell out.put. t.hrough a linear filter with characteristics de­
termined entirely by the rod signal and noise spectra. This filter is very 
general; in fact it. is the first st.age in any visual signal processing task 
at. 10\\' photon flux. \Ve iopntify the output of this first-st.age filter wit.h 
the intracellular voltage response of the bipolar celL the first anatomical 
st.age in retinal signal processing. From recent. data on tiger salamander 
phot.oreceptors we extract t.he relevant. spect.ra and make parameter-free, 
quantit.ative predictions of the bipolar celll'esponse to a dim, diffuse flash. 
Agreement wit.h experiment is essentially perfect. As far as we know this 
is the first successful predicti ve t.heory for neural dynamics. 

1 Introd uction 

A number of hiological sensory cells perform at. a level which can be called optimal 
- t.heir performancf' approaches limits set. by t.he laws of physics [1]. In some cases 
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the behavioral performance of an organism, not just the performance of the sensory 
cells, also approaches fundamental limits. Such performance indicates that neural 
comput.ation can reach a level of precision where the reliability of the computed 
out.put is limited by noise in the sensory input rather than by inefficiencies in the 
processing algorithm or noise in the processing hardware [2]. These observations 
suggest that we study algorithms for optimal signal processing. If we can make the 
notion of optimal processing precise we will have the elements of a predictive (and 
hence unequivocally testable) theory for what the nervous system should compute. 
This is in contrast. t.o traditional modeling approaches which involve adjustment of 
free parameters to fit experimental data. 

To further develop these ideas we consider the vertebrate retina. Since the classic 
experiments of Hecht, Shlaer and Pirenne we have known that the dark-adapted 
visual syst.em can count small numbers of photons [3]. Recent experiment.s confirm 
Barlow's suggestion [4,5] t.hat the reliability of behavioral decision making reaches 
limits imposed by dark noise in the photoreceptors due to thermal isomerizat.ion of 
t.he photopigment [6]. If dark-adapted visual performance is limit.ed by thermal noise 
in t.he sensory cells then the subsequent layers of signal processing circuitry must be 
extremely reliable. Rather than trying to determine precise limits t.o reliability, we 
follO\\I the approach introduced in [7] and use the not.ion of "optimal computation" 
t.o design the optimal processor of visual stimuli. These theoret.ical arguments 
result in parameter-free predictions for the dynamics of signal transfer from t.he 
rod photoreceptor to t.he bipolar cell, the first stage in visual signal processing. We 
compare these predictions directly with measurements on the intact retina of t.he 
t.iger salamander A mbystoma tigrinum [8,9]. 

2 Design of the optimal processor 

All of an organism's knowledge of the visual world derives from the currents In (t) 
flowing in the photoreceptor cells (labeled n). Visual signal processing consists of 
estimating various aspects of the visual scene from observat.ion of these current.s. 
Furthermore, t.o be of use to the organism t.hese estimates must be carried out in real 
time. The general problem then is to formulate an optimal strat.egy for estimating 
some functional G[R(r, t)] of the time and position dependent photon arrival rate 
R(r, t) from real time observation of the currents InU). 

\Ve can make considerable analytic progress to\vards solving this general prohlem 
using probabilistic methods [7,2]. St.art. by writ.ing an expression for the probability 
of t.he functional G[R(r,t)] conditional on the currents InU), P{G[R(r,t)Jlln(t)}. 
Expanding for low signal-to-noise ratio (SNR) we find that the first term in the 
expa.nsion of P{ GIl} depends only on a filt.ered version of the rod current.s, 

P{G[R(r, t)]IIn(t)} = 8 G [F * In] + higher orJer corrections, (1) 

where * denotes convolution; the filter F depends only on t.he signal a.nd noise 
characteristics of t.he photorecept.ors, as described below. Thus the estimation t.ask 
divides nat.urally int.o two stages - a universal "pre-processing" stage and a t.ask­
e1ept>ndellt stage. The univf'rsal stage is independent both of the stimulus R(r, t) anel 
of the particular functiona.l G[R] we wish to estimate. Intuitively this separa.tion 
makes sense; in conventional signa.l processing systems detector outputs are first 
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Figure 1: Schematic view of photon arrival rate estimation problem. 

processed by a filter whose shape is motivated by general SNR considerat.ions. Thus 
the view of retinal signal processing which emerges from this calculation is a pre­
processing or "cleaning up" stage followed by more specialized processing stages. 
Vve emphasize that this separat.ion is a mathematical fact, not. a model we have 
imposed. 

To fill in some of the details of the calculation we turn to t.he simplest example of 
the estimat.ion tasks discussed above - est.imation of t.he phot.on arrival rat.e itself 
(Fig. 1): Photons from a light source are incident on a small patch of retina at 
a time-varying rate R(t), resulting in a current J(t) in a particular rod cell. The 
theoret.ical problem is t.o determine the opt.imal st.rategy for est.imat.ing R{t) based 
on t.he currents 1(t) in a small collect.ion of rod cells. \Vit.h an appropriat.e defini­
tion of "optima.l" we can pose t.he estimation problem ma.themat.ically and look for 
analytic or numerica.l solutions. One approach is the conditional probability calcu­
lat.ion discussed above [7]. Alternatively we can solve t.his problem using functional 
met.hods. Here we outline the funct.ional calculation. 

Start by writing the estimated rate as a filtered version of t.he rod currents: 

Rest(t) J dTFl(T)J(t - T) 

+ J dT J dT' F2(T, T')J(t - T)/(i - T') + .... (2) 

In t.he low SNR limit. t.he rods respond linearly (t.hey count photons), and we expect. 
that. t.he linear term dominates the series (2) . \Ve then solve analyt.ically for t.he 
filt.er FdT) which minimizes \2 = (J dt IR(t) - Rest (t)12) - i.t. t.he filt.er which 
satisfies 6\2j6Fdr) = o. The averages ( .. . ) are taken over t.he ensemble of stimuli 
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R( t). The result of t.his optimization is* 

J dw . (R(w)i*(w)) 
Fd T) = _e-1u.'T . 

2;r (li(w)F) 
(3) 

In the photon counting regime the rod currents are described as a sum of impulse 
responses 10(t - tiJ) occuring at t.he phot.on arrival times t p , plus a noise term 61(t). 
Expanding for low SNR we find 

F() Jdw -i .... ,TS )io(w) 
'I r = -, -e R(W -. + '" , 

2;r ~J(w) 
(4) 

where SR(W) is t.he spectral density of fluctuations in the photon arrival rate, io(w) 
is the Fourier transform of IoU), and Sdw) is the spectral density of current noise 
ol(t) in the rod. 

The filter (4) naturally separat.es into two distinct stages: A "first" stage 

Fbip(W) = io(W)/SI(W) (5) 
which depends only on t.he signal and noise properties of the rod cell, and a "sec­
ond" stage SR(W) which contains our a priori knowledge of the stimulus. The first 
stage filter is the matched filter given the rod signal and noise characteristics; each 
frequency component. in the output of this filt.er is weight.ed according to its input 
SNR. 

Recall from the probabilistic argument above that optimal estimation of some arbi­
trary aspect of the scene, such as motion, also results in a separation into t.wo pro­
cessing stages. Specifically, estimation of any functional of light intensity involves 
only a filtered version of the rod currents. This filter is precisely t.he universal filter 
Fbip( T) defined in (5). This result makes intuitive sense since the first stage of 
filtering is simply "cleaning up" the rod signals prior to subsequent computation. 
Intuitively we expect that this filtering occurs at an early stage of visual processing. 
The first opportunity to filter the rod signals occurs in the transfer of signals be­
t.ween the rod and bipolar cells; we identify the transfer function between these cells 
with the first st.age of our optimal filter. More precisely we ident.ify the intracellular 
voltage response of the bipolar cell with the output of the filter FbiP ( r). In response 
to a dim flash of light at t = 0 the average bipolar cell voltage response should t.hen 
be 

{'bip(t) ()( J dT Fbip(r)Io(t - r). (6) 

1Vowhere in this prediction process do 'we illsert allY information about the bipolar 
reSp01lSE - th( shape of Oltr' prediction is go punEd entirely by signal and noise 
properties of the rod cell and the theordical prillciple of optimality. 

3 Extracting the filter parameters and predicting the 
bipolar response 

To complet.e our prediction of t.he dim flash bipolar response we extract the rod 
single photon current Io(t) and rod current. noise spect.rum .':h(w') from experimen-

·'Ve definf> the Fourier Transrorm as j(w) = J dte+iu.,t 1(t). 
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Figure 2: Comparison of predicted dim flash bipolar voltage response (based entirely 
on rod signal and noise characteristics) and measured bipolar voltage response. For 
reference we show rod voltage responses from two different cells which show the typical 
variations from cell to cell and thus indicate the variations we should expect in different 
bipolar cells. The measured responses are averages of many presentations of a diffuse 
flash occurring at t = 0 and resulting in the absorption of an average of about 5 photons 
in the rod cell. The errors bars are one standard deviation. 

t.al data. To compare our predict.ion directly wit.h experiment. we must obt.ain the 
rod characteristics under identical recording conditions as the bipolar measurement. 
This excludes suct.ion pipette measurement.s which measure t.he current.s directly, 
but effect. t.he rod response dynamics [10.11]. The bipolar voltage response is mea­
sured intracellularly in t.he eyecup preparation [8]; our approach is t.o use int.racel­
lular volt.age recordings t.o characterize the rod network and thus convert. volt.ages 
to current.s, as in [12]. This approach to the problem Illay seem overly complicat.ed 
- why did we formulat.e the theory in t.erms of currents and not. voltages? It is 
important. we formulate our theory in t.erms of the i7ldilliriuaJ rod signal and noise 
characteristics. The electrical coupling between rod cells in t.he ret.ina causes t.he 
voltage noise in nearby rods t.o be correlated; each rod, however, independently 
injects current noise int.o the network. 

The impedances connecting adjacent. rod cells, the impedance of t.he rod cell itself 
and t.he spat.ial la.yout and connect.ions between rods det.ermine t.he relationship 
bet.ween current.s and voltages in t.he net.work. The rods lie nearly on a square 
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lattice with lattice constant 2011111 . Using this result we extract t.he impedances from 
two independent experiments (12]. Once we have t.he impedances we "dec.orrelate" 
the voltage noise to calculate the uncorrelat.ed current noise. We also convert the 
measured single photon voltage response to the corresponding current Io(t). It 
is important. to realize that t.he impedance characteristics of the rod network are 
experimentally determined, and are not. in any sense free parameters! 

After completing these calculat.ions the elements of our bipolar prediction are ob­
tained under ident.ical conditions to the experimental bipolar response, and we can 
make a direct comparison between the t.wo; th ere are no free parameters il1 this 
prediction. As shown in the Fig. 2, t.he predicted bipolar response (6) is in excellent 
agreement wit.h the measured response; all deviat.ions are well within the error bars. 

4 Concluding remarks 

'Ve began by posing a theoretical question: How can we best recover t.he phot.on 
arrival rat.e from observations of the rod signals? The answer, in the form of a linear 
filter which we apply to t.he rod current, divides into two st.ages - a stage which is 
matched to the rod signal anel noise charact.eristics, and a stage which depends on 
the particular characteristics of the phot.on source we are observing. The first-stage 
filter in fact. is the universal pre-processor for all visual processing tasks at low SNR. 
vVe identified t.his filter wit.h the rod-bipolar transfer function, and based on this 
hypothesis predicted the bipolar response t.o a dim , diffuse flash. Our prediction 
agrees ext.remely well with experiment.al bipolar responses. '''Te emphasize once 
more that this is not. a "model" of the bipolar cell; in fact there is nothing in our 
theory about the physical propert.ies of bipolar cells. Rather our approach results 
in parameter-free predictions of the computation al properties of these cells from t.he 
general theoretical principle of opt.imal computation. As far as we know t.his is the 
first. successful quantit.at.ive predict.ion from a theory of neural computation. 

Thus far our results are limited t.o t.he dark-adapted regime; however the theoreti­
cal analysis present.ed here depends only on low SNR. This observat.ion suggest.s a 
follow-up experiment. t.o test t.he role of adaptation in t.he rod-bipolar transfer func­
tion. If the retina is first a.dapt.ed to a constant background illuminat.ion and then 
shown dim flashes on t.op of the background we can use the analysis presented here 
to predict t.he adaptEd bipolar rpsponse from the adapted rod impulse response and 
noise. Such an experiment.s would answer a number of interesting questions about. 
ret.inal processing: (l) Does the processing remain optima.l at. higher light. levels? 
(2) Does t.he bipolar ('ell ~till function as t.he universal pre-processor? (:3) Do the 
roJ anel bipolar ('ells adapt t.oget.her in such a way that the optimal first.-stage filter 
remains IInchanged, or does t.he rod-bipola.r transfer function also adapt.? 

Can t.hese iJeas be ext.ended t.o ot.her systems, particularly spiking cells'? A number 
of other signal processing syst.ems exhibit. nearly optimal performance [2]. One 
example we are currently st.udying is the extraction of movement information from 
the array of photoreceptor voltages in the insect compound eye [13). In related 
work. A tick and Redlich [l4] have argueJ that t.he receptive field characteristics of 
ret.inal ganglion C(-'lIs call be quantitat.ively predicted from a principle of opt.imal 
encoding (see also [15)). A more general quest.ion we are currently pursuing is 
the efficiency of t.he coding of sensory information in neural spike t.rains. Our 
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preliminary results indicate that the information rate in a spike train ca.n be as high 
as 80% of the maximum information rate possible given the noise characteristics of 
spike generat.ion [16]. From these examples we believe t.hat "optimal performance" 
provides a general theoretical framework which can be used to predict t.he significant 
computational dynamics of cells in many neural systems. 
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