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ABSTRACT 

We show analytically how the stability of two-dimensional lateral 
inhibition neural networks depends on the local connection topology. 
For various network topologies, we calculate the critical time delay for 
the onset of oscillation in continuous-time networks and present 
analytic phase diagrams characterizing the dynamics of discrete-time 
networks. 

1 INTRODUCTION 

Mutual inhibition in an array of neurons is a common feature of sensory systems 
including vision, olfaction, and audition in organisms ranging from invertebrates to man. 
A well-studied instance of this configuration is lateral inhibition between neighboring 
photosensitive neurons in the retina (Dowling, 1987). Inhibition serves in this case to 
enhance the perception of edges and to broaden the dynamic range by setting a local 
reference point for measuring intensity variations. Lateral inhibition thus constitutes the 
first stage of visual information processing. Many artificial vision systems also take 
advantage of the computational power of lateral inhibition by directly wiring inhibition 
into the photodetecting electronic hardware (Mead, 1989). 

Lateral inhibition may create extensive feedback paths, leading to network-wide collective 
oscillations. Sustained oscillations arising from lateral inhibition have been observed in 
biological visual system~specifically. in the compound eye of the horseshoe crab 
Limulus (Barlow and Fraioli, 1978; Coleman and Renninger, 1978)-as well as in 
artificial vision systems, for instance plaguing an early version of the electronic retina 
chip built by Mead et al. (Wyatt and Standley, 1988; Mead, 1989). 

In this paper we study the dynamics of simple neural network models of lateral inhibition 
in a variety of two-dimensional connection schemes. The lattice structures we study are 
shown in Fig. 1. Two-dimensional lattices are of particular importance to artificial 
vision systems because they allow an efficient mapping of an image onto a network and 
because they are well-suited for implementation in VLSI circuitry. We show that the 
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stability of these networks depends sensitively on such design considerations as local 
connection topology, neuron self-coupling, the steepness or gain of the neuron transfer 
function, and details of the network dynamics such as connection delays for continuous­
time dynamics or update rule for discrete-time dynamics. 
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Figure 1: Connection schemes for two-dimensional lateral inhibition networks 
considered in this paper: (a) nearest-neighbor connections on a square lattice; (b) 
nearest-neighbor connections on a triangular lattice; (c) 8-neighbor connections 
on a square lattice; and (d) 12-neighbor connections on a square lattice. 

The paper is organized as follows. Section 2 introduces the dynamical equations 
describing continuous-time and discrete-time lateral inhibition networks . Section 3 
discusses the relationship between lattice topology and critical time delay for the onset of 
oscillation in the continuous-time case. Section 4 presents analytic phase diagrams 
characterizing the dynamics of discrete-time lateral inhibition networks as neuron gain, 
neuron self-coupling, and lattice structure are varied. Our conclusions are presented in 
Section 5. 

2 NETWORK DYNAMICS 
We begin by considering a general neural network model defined by the set of electronic 
circuit equations 

Ci dUi(t')/dt'= - ui(t')/Ri + ~T;jfA uAt'-'l'i/)) + Ii ,i=l .... ,N, (1) 
J 

where u · is the voltage. C. the capacitance. and R j -1 = 1'. j l1ij I the total conductance at 
the inpJt of neuron i. I~put to the network is througli the applied currents Ii. The 
nonlinear transfer function Ii is taken to be sigmoidal with odd symmetry and maximum 
slope at the origin. A time delay 'l'i/ in the communication from neuron i to neuron j 
has been explicitly included. Such a delay could arise from the finite operating speed of 
the elements-neurons or amplifiers-or from the finite propagation speed of the 
interconnections. For the case of lateral inhibition networks with self-coupling. the 
connection matrix is given by 

{ 
r for i = j 

Tij = -1 for i, j connected neighbors 

o otherwise, 

(2) 

which makes Ri- 1 = Irl+ z for all i, where z is the number of connected neighbors. 
For simplicity, we take all neurons to have the same delay and characteristic relaxation 
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time (t.'=tdelgy ' R.C .=trelax for all i) and identical transfer functions. With these 
assumptions, hq. (1) ~an be rescaled and written in terms of the neuron outputs Xi(t) as 

dxi(t)/dt = - Xi(t) + F(Ij I;:;xj(t - t) + Ii)' i=l, ... , N, (3) 

where the odd, sigmoidal function F now appears outside the sum. The function F is 
characterized by a maximum slope f3 (> 0), and its saturation amplitude can be set to ±1 
without loss of generality. The commonly used form F(h) = tanh(f3h) satisfies these 
requirements; we will continue to use F to emphasize generality. As a result of 
rescaling, the delay time t is now measured in units of network relaxation time (i.e. 
t = tdelay/trelax )' and the connection matrix is normalized such that Ljl1ijl = 1 for 
all i. Stability of Eq. (3) against coherent oscillation will be discussed in Section 3. 

The discrete-time iterated map, 

, i=l, ... , N, (4) 

with parallel updating of neuron states Xi(t), corresponds to the long-delay limit of Eq. 
(3) (care must be taken in considering this limit; not all aspects of the delay system carry 
over to the map (Mallet-Paret and Nussbaum, 1986)). The iterated map network, Eq. (4), 
is particularly useful for implementing fast, parallel networks using conventional 
computer clocking techniques. The speed advantage of parallel dynamics, however, comes 
at a price: the parallel-update network may oscillate even when the corresponding 
sequential update network is stable. Section 4 gives phase diagrams based on global 
stability analysis which explicitly define the oscillation-free operating region of Eq. (4) 
and its generalization to a multistep updating rule. 

3 STABILITY OF LATTICES WITH DELAYED INHIBITION 
In the absence of delay (t = 0) the continuous-time lateral inhibition network, Eq. (3), 
always converges to a fixed point attractor. This follows from the famous stability 
criterion based on a Liapunov (or "energy") function (Cohen and Grossberg, 1983; 
Hopfield, 1984), and relies on the symmetry of the lateral inhibitory connections (Le. 
'Tjj = Tji for all connection schemes in Fig. I). This guarantee of convergence does not 
hold for nonzero delay, however, and it is known that adding delay can induce sustained, 
coherent oscillation in a variety of symmetrically connected network configurations 
(Marcus and Westervelt, 1989a). Previously we have shown that certain delay networks 
of the form ofEq. (3)--including lateral inhibition network~will oscillate coherently, 
that is with all neurons oscillating in phase, for sufficiently large delay. As the delay is 
reduced, however, the oscillatory mode becomes unstable, leaving only fixed point 
attractors. A critical value of delay tcrit below which sustained oscillation vanishes for 
any value of neuron gain f3 is given by 

tcrit=-ln(I+Amax/Amin) (0< A max <-Amin) (5) 

where Amax and Amin are the extremal eigenvalues of the connection matrix Tij. The 
analysis leading to (5) is based on a local stability analysis of the coherent oscillatory 
mode. Though this local analysis lacks the rigor of a global analysis (which can be done 
for t = 0 and for the discrete-time case, Eq. (4)) the result agrees well with experiments 
and numerical simulations (Marcus and Westervelt, 1989a). 
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It is straightforward to find the spectrum of eigenvalues for the lattices in Fig. 1. 
Assuming periodic boundary conditions, one can expand the eigenvalue equation Tx = A x 
in terms of periodic functions x) = Xo exp(i q. Rj ) ,where Rj is the 2D vector position of 
neuron j and q is the reciprocal lattice vector characterizing a particular eigenmode. In 
the large network limit, this expansion leads to the following results for the square and 
triangular lattices with nearest neighbor connections and self-connection r [see next 
section for a table of eigenvalues]: 

'r crit ~ In( 1/2 - 2/ r ) (-4<r<0) [n.n. square lattice, Fig. l(a)] , (6a) 

'rcrit ~ In[(r- 6)/(2r- 3)] (-3 < r< 3/2) [n.n. triangular lattice, Fig. 1(b)]. (6b) 

Curves showing 'rcrit as a function of self-connection r are given in Fig. 2. These 
reveal the surprising result that the triangular lattice is much more prone to delay-induced 
oscillation than the square lattice. For instance, with no self connection (r= 0), the 
square lattice does not show sustained oscillation for any finite delay, while the triangular 
lattice oscillates for 'r > In 2 == 0.693 . 

2 

1 ~* r 0 r 2.5 ~ -1 + 
-3 

-4 

Figure 2: Critical delay 'rcrit as a function of self-connection r. from Eq. (6). 
Note that for r = 0 only triangular lattice oscillates at finite delay. The 
analysis does not apply at exactly 'r = 0, where both networks are stable for all 
values of r. 

The important difference between these two lattices--and the quality which accounts for 
their dissimilar stability properties-is not simply the number of neighbors, but is the 
presence of frustration in the triangular lattice but not in the square lattice. Lateral 
inhibition, like antiferromagnetism, forms closed loops in the triangular lattice which do 
not allow all of the connections to be satisfied by any arrangement of neuron states. In 
contrast, lateral inhibition on the square lattice is not frustrated, and is, in fact, exactly 
equivalent to lateral excitation via a gauge transformation. We note that a similar 
situation exists in 2D magnetic models: while models of 2D ferromagnetism on square 
and triangular lattices behave nearly identically (both are nonfrustrated). the corresponding 
2D antiferromagnets are quite different, due to the presence of frustration in the triangular 
lattice, but not the square lattice (Wannier, 1950). 
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4 LATTICES WITH ITERATED-MAP DYNAMICS 

Next we consider lateral inhibition networks with discrete-time dynamics where all neuron 
states are updated in parallel. The standard parallel dynamics fonnulation was given above 
as Eq. (4), but here we will consider a generalized updating rule which offers some 
important practical advantages. The generalized system we consider updates the neuron 
states based on an average over M previous time steps, rather than just using a single 
previous state to generate the next This multistep rule is somewhat like including time 
delay, but as we will see, increasing M actually makes the system more stable compared 
to standard parallel updating. This update rule also differs from the delay-differential 
system in pennitting a rigorous global stability analysis. The dynamical system we 
consider is defined by the following set of coupled iterated maps: 

M-l 
zlt)=M-1 :L Xj(t-'r) , 

-r=O 
(7) 

where i,j = l, ... ,N and ME {1,2,3, ... }. The standard parallel updating rule, Eq.(4), is 
recovered by setting M = 1. 

A global analysis of the dynamics of Eq. (7) for any symmetric Tij is given in (Marcus 
and Westervelt, 1990), and for M=1 in (Marcus and Westervelt, 1989b). It is found that 
for any M, if all eigenvalues A satisfy 131,1,1 < 1 then there is a single attractor which 
depends only on the inputs Ii. For Ii = 0, this attractor is the origin, Le. all neurons at 
zero output. Whenever 13IAI > 1 for one or more eigenvalues, multiple fixed points as 
well as periodic attractors may exist. There is, in addition, a remarkably simple glopal 
stability criterion associated with Eq. (7): satisfying the condition 1/13 >-Amin(1i')/~ 
insures that no periodic attractors exist, though there may be a multiplicity of fixed' point 
attractors. As in the previous section, Amin is the most negative eigenvalue of Tij. If 
Tij has no negative eigenvalues, then Amin is the smallest positive eigenvalue, and the 
stability criterion is satisfied trivially since 13 is defined to be positive. 

These stability results may be used to compute analytic phase diagrams for the various 
connection schemes shown in Fig. 1 and defined in Eq. (3). The extremal eigenvalues of 
Tij are calculated using the Fourier expansion described above. In the limit of large 
lattice size and assuming periodic boundary conditions, we find the following: 

square n.n. triangle n. n. square 8-n. square 12-n. 

Amax: 
r+ 4 r+3 r+4 r+ 13/3 

Irl+4 Irl+6 Irl+8 Irl+12 

Amin: 
r- 4 r-6 r-8 r- 12 
Irl+4 Irl+6 Irl+8 Irl + 12 

The resulting phase diagrams characterizing regions with different dynamic properties are 
shown in Fig. 3. The four regions indicated in the diagrams are characterized as follows: 
(1) orig: low gain regime where a unique fixed point attractor exists (that attractor is the 
origin for Ii = 0); (2) fp: for some inputs Ii multiple fixed point attractors may exist, 
each with an attracting basin, but no oscillatory attractors exist in this region (i.e. no 
attractors with period >1); (3) osc: at most one fixed point attractor, but one or more 
oscillatory modes also may exist; (4) fp + osc: multiple fixed points as well as 
oscillatory attractors may exist. 
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Figure 3: Phase diagrams based on global analysis for lateral inhibition 
networks with discrete-time parallel dynamics [Eq.(7)] as a function of neuron 
gain f3 and self-connection r. Regions orig, jp, OSC, and jp+osc are 
defmed in text. (a) Nearest-neighbor connections on a square lattice and single­
step updating (M=l); (b) nearest-neighbor connections on a triangular lattice, 
M=l; (c) 8-neighbor connections on a square lattice, M=l; (d) 12-neighbor 
connections on a square lattice, M=l; (e) nearest-neighbor connections on a 
square lattice, M=3; (0 nearest-neighbor connections on a triangular lattice, 
M=3. 
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5 CONCLUSIONS 
We have shown analytically how the dynamics of two-dimensional neural network models 
of lateral inhibition depends on both single-neuron properties-such as the slope of the 
sigmoidal transfer function, delayed response, and the strength of self-connection--and 
also on the topological properties of the network. 

The design rules implied by the analysis are in some instances what would be expected 
intuitively. For example, the phase diagrams in Fig. 4 show that in order to eliminate 
oscillations one can either include a positive self-connection term or decrease the gain of 
the neuron. It is also not surprising that reducing the time delay in a delay-differential 
system eliminates oscillation. Less intuitive is the observation that for discrete-time 
dynamics using a multistep update rule greatly expands the region of oscillation-free 
operation (compare, for example Figs. 4(a) and 4(e». One result emerging in this paper 
that seems quite counterintuitive is the dramatic effect of connection topology, which 
persists even in the limit of large lattice size. This point was illustrated in a comparison 
of networks with delayed inhibition on square and triangular lattices, where it was found 
that in the absence of self-connection, only the triangular lattices will show sustained 
oscillation. 

Finally, we note that it is not clear to us how to generalize our results to other network 
models, for example to models with asymmetric connections which allow for direction­
selective motion detection. Such questions remain interesting challenges for future work. 
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