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Abstract 

The neocognitron is a neural network for pattern recognition and feature 
extraction. An analog CCD parallel processing architecture developed 
at Lincoln Laboratory is particularly well suited to the computational re­
quirements of shared-weight networks such as the neocognitron, and imple­
mentation of the neocognitron using the CCD architecture was simulated. 
A modification to the neocognitron training procedure, which improves 
network performance under the limited arithmetic precision that would be 
imposed by the CCD architecture, is presented. 

1 INTRODUCTION 

Multilayer neural networks characterized by local interlayer connectivity and groups 
of nodes that are constrained to have the same weights on their input lines are often 
refered to as shared-weight networks. A group of nodes with identical weights where 
each node is connected to a different portion of the layer immediately beneath can 
be thought of as a collection of spatially replicated receptive fields. Among the 
desirable attributes of shared-weight networks is the fact that substantially less 
storage is required for weights than would be required by a more conventional net­
work with a comparable number of nodes. Furthermore, reducing the number of 
free parameters through use of shared weights and local receptive fields, as op­
posed to simply reducing the number of hidden nodes, may be an effective way of 
obtaining good generalization when only a small training set is available (Martin 
and Pittman, 1989). However, the most immediately obvious attribute of a shared­
weight architecture is that the replicated receptive fields allow a learned feature 
to be detected anywhere within the input. This feature is particularly useful in 

1039 



1040 Chuang and Chiang 

tasks where position invariance is required (Le Cun, 1989). Neural networks using 
shared weights have been applied successfully to areas ranging from handwritten 
digit recognition (Le Cun, Boser, et. al., 1989) to phoneme extraction in speech 
preprocessing (Waibel, et. al., 1989). 

A CCD architecture that is well suited to implementing shared-weight networks has 
been developed at Lincoln Laboratory (Chiang and LaFranchise, 1991). This archi­
tecture performs high-speed inner prod uct computations and is able to accommo­
date the often complicated data access patterns of a shared-weight network without 
imposing the burden of this complexity on the host computer; input and output 
to devices built using this architecture are simple. The neocognitron (Fukushima, 
1988) was selected as a candidate for implementation by the CCD architecture. 
In particular, we were interested the effect that limited precision arithmetic might 
have on network performance. 

2 THE NEOCOGNITRON 

The neocognitron is a multilayer feed-forward neural network for pattern recog­
nition. The nodes or cells in each layer or le~el of the neocognitron are further 
subdivided into cell planes, where all the nodes in a given cell plane are feature 
detectors tuned to the same feature but connected to a different portion of the level 
immediately beneath (the first level has cell planes connected directly to the input). 
Each cell plane can be viewed as an array of identical, overlapping receptive fields. 

Three types of processing elements or nodes are used in the neocognitron. S-cells 
perform feature extraction, c-cells compensate for local shifts of features, and v-cells 
are intended to prevent random excitation of s-cells. A given cell plane contains 
only one type of node. A cell plane containing only s-cells, for example, is thus 
called an s-plane. Each level of the network contains several s-planes, an identical 
number of c-planes, and exactly one v-plane. The function of an s-cell is to generate 
a nonlinear function of the inner product of a stored weight template a>.(k, /\', i, j) 
and the contents of its receptive field. (In this notation A denotes the level of 
the s-plane with which the template is associated, and the k and/\' indicate the 
particular s- and c-planes between which the template serves as a connection. The 
i, j are spatial coordinates within the template.) An s-plane is therefore a feature 
map of its input. Each c-plane is paired with a single s-plane of the same level. A c­
cell has a small receptive field on its correpsonding s-plane and performs a weighted 
average of the values of the s-cells to which it is connected. This implements a 
form of local feature-shift invariance, and a c-plane is a feature map of its input 
which is unchanged by small translations of features in the input. A schematic of a 
three-level neocognitron is shown in Figure 1. 

The cell planes in the first level of the network typically correspond to maps of simple 
features such as oriented line segments. The second level of the neocognitron is given 
the output of the first-level c-planes as input, and tends to form more complicated 
features from the first-level cell planes. Successively higher levels correspond to even 
more complex features; at the top level, each c-cell (of which there is exactly one in 
each top-level c-plane) corresponds to one input pattern in a trained neocognitron. 
The basic idea is to break up each input pattern into simple components such as 
line segments and corners, then to put the pieces back together, allowing a certain 
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An image feature extractor (IFE) device suitable for performing the inner products 
required by a neural network with local receptive fields and shared weights has 
been fabricated (Chiang and LaFranchise, 1991). The IFE consists of a 775-stage 
CCD tapped delay line for holding and shifting input pixels or node values, 49 
eight-bit, four-quadrant mUltiplying digital-to-analog converters (MDACs), and on­
chip storage for 980 eight-bit digital weights. Figure 2 is a photomicrograph of 
the chip, which has an area of 29 mm2 and performs over one billion arithmetic 
operations/second when clocked at 10 MHz. The device dissipates less than 1 W. 

The 49 MDACs of the IFE are arranged in a 7 x 7 array; each l\lDAC nondestruc­
tively senses the value held in an appropriate point along the 775-stage tapped delay 
line, which holds six 128-pixel lines, plus seven pixels of the following line, of the 
input image. Image pixels are continuously loaded into the device in row-by-row 
fashion. Each MDAC has a local memory of twenty eight-bit digital weights for 
holding inner product kernel or template values. Conceptually, the device scans a 
7 x 7 "window" over an input array, shifting one position at each step, and computes 
the inner product of each of the twenty templates with the portion of the image 
beneath the window. The multiplications of each inner product are performed in 
parallel and the partial sums are connected to a common output line, allowing the 
complete inner product to be computed in one clock. In actuality, the device passes 
the input image under the 7 x 7 window, performing twenty inner products with 
each shift of the image. A schematic of data flow through the IFE device is shown 
in Figure 3. 

Figure 2: Photomicrograph of the CCD Image Feature Extractor 

4 A MODIFIED TRAINING ALGORITHM 

Most computer simulations of the neocognitron have used floating point arithmetic 
as well as weights which are, for all practical purposes, real numbers. However, 
a neocognitron implemented using an IFE device would use fairly low precision 
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amount of relative position shift between the pieces at each stage of reassembly. 
This allows the network to identify deformed or shifted inputs. The extent to which 
a particular network is able to tolerate deformation of input patterns depends on 
the amount of overlap between adjacent receptive fields as well as the size and 
weighting of c-cell receptive fields. 

The output of an s-cell is given by 
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Figure 1: Schematic of a Three-Level N eocognitron 

The majority of the computation in the neocognitron consists of the inner prod uets. 
A good implementation of shared-weight networks such as the neocognitron must be 
capable of performing high speed inner product computations as well as supporting 
the data access patterns of the algorithm efficiently. A device which meets both 
these requirements is described in the following section. 

3 THE ThfAGE FEATURE EXTRACTOR 

The neoeognitron is most easily visualized as a three-dimensional structure built of 
the 8-, c- and v-cells, but the s- and c-planes can be generated by raster scanning 
weight templates whose values are the a~(k, It, i, j) or the d~(i, j), respectively, over 
the appropriate input. This operation can be performed efficiently by the CCD 
architecture alluded to in the Introduction. In this architecture, analog node values 
are represented using charge packets while fully programmable weight values are 
stored digitally on-chip. The multiplications of the generic weighted sum computa­
tion are performed in parallel, with the summation performed in the charge domain, 
yielding a complete inner product sum on each clock. 
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Figure 3: Dataflow in the Image Feature Extractor 
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Figure 4: (a) Effect of Arithmetic Precision on Classification (b) Comparision of 
Original and Modified Training Procedures 
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arithmetic and quantized weights. In order to determine whether the neocognitron 
would continue to perform under such restrictions, a software simulation of neocog­
nitrons using low precision arithmetic was implemented. Weights were taken from 
a network that was previously trained using floating point arithmetic and quantized 
to a number of bits equal to the arithmetic precision. As can be seen from Figure 
4(a), the fraction of inputs correctly identified (bottom curve) from a test set of 
handwritten letters decreases substantially as arithmetic precision is reduced. Al­
though the error rate (top curve) remains approximately constant, lower arithmetic 
precision tends to increase the number of rejections. 

4.1 EFFECT OF LIMITED PRECISION 

Inspection of the weights revealed that the range of weights from previously trained 
nets was too large to be represented using the number of bits available. Either small 
weights were set to zero, large weights were clipped, or both. Networks trained using 
low precision arithmetic tended to group all input patterns into a single category. 
This can again be attributed to the restricted range of possible weight values. The 
neocognitron training algorithm consists of assigning small random initial values 
to weights and presenting training inputs. The connection weights that produce 
strong responses are increased according to 

ar (l,K,;,i) = arl(l, K,I,j) + &l[(I:,K,i,}) 

&lI(l,K,i,i) = ql '/'-1 (i,j)' Ci_I(K,m, +; -I,ll, + } -I) ~ 0 

br(l)::: bt'(A:) + 6bI(l) 

6bI(l)=q, ·vi(mT.IIT)~O 

where "y is an update index. Restricted to a fairly small range of numbers, weights 
could not be increased to the point where the contribution of the cell planes whose 
initial random weights were unchanged became negligible. Those initial weights 
that were not updated contribute random features to the recognition process; the 
effect is that of adding noise. 

4.2 WEIGHT NORMALIZATION 

In order to reduce the effects of clipping on the quantized weights, the weight update 
algorithm was modified. As can be seen from the weight update equations, the stan­
dard training procedure allows the a~(k, K, i, j) values to grow without bound. The 
inner product of the weights and the input is normalized implicitly when compu ting 
the s-cell output. Rather than using the available numerical range so lavishly, the 
algorithm was modified to normalize the a~(k, K, i, j) templates explicitly during 
training after they reached a prespecified bound. The reduction in classification 
performance as computational precision decreases is compared between neocogni­
trons trained using the modified algorithm and networks trained using the original 
algorithm in Figure 4(b). Networks trained using the modified algorithm have 
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somewhat higher (less than 5 percent) rejection and error rates compared to orig­
inal networks when using floating point arithmetic, but demonstrate significantly 
better performance when computational precision is limited to eight bits or less. 

5 SUMMARY 

We have presented a CCD architecture that is well matched to the computational 
requirements of shared-weight neural networks with local connectivity. The imple­
mentation of the neocognitron, a shared-weight network for pattern recognition and 
feature extraction, was simulated and a new training procedure that significantly 
improves classification when limited precision arithmetic is used, is presented. 
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