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Abstract 

We present and compare learning rate schedules for stochastic gradient 
descent, a general algorithm which includes LMS, on-line backpropaga­
tion and k-means clustering as special cases. We introduce "search-then­
converge" type schedules which outperform the classical constant and 
"running average" (1ft) schedules both in speed of convergence and quality 
of solution. 

1 Introduction: Stochastic Gradient Descent 

The optimization task is to find a parameter vector W which minimizes a func­
tion G(W). In the context of learning systems typically G(W) = £x E(W, X), i.e. 
G is the average of an objective function over the exemplars, labeled E and X 
respectively. The stochastic gradient descent algorithm is 

Ll Wet) = -1](t)V'w E(W(t), X(t)). 

where t is the "time", and X(t) is the most recent independently-chosen random 
exemplar. For comparison, the deterministic gradient descent algorithm is 

Ll Wet) = -1](t)V'w£x E(W(t), X). 
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Figure 1: Comparison of the shapes of the schedules. Dashed line = constant, Solid line 
= search-then-converge, Dotted line = "running-average" 

While on average the stochastic step is equal to the deterministic step, for any 
particular exemplar X(t) the stochastic step may be in any direction, even uphill 
in £x E(W(t), X). Despite its noisiness, the stochastic algorithm may be preferable 
when the exemplar set is large, making the average over exemplars expensive to 
compute. 

The issue addressed by this paper is: which function should one choose for 7](t) 
(the learning rate schedule) in order to obtain fast convergence to a good local 
minimum? The schedules compared in this paper are the following (Fig. 1): 

• Constant: 7](t) = 7]0 

• "Running Average": 7](t) = 7]0/(1 + t) 

• Search-Then-Converge: 7](t) = 7]0/(1 + tlr) 

"Search-then-converge" is the name of a novel class of schedules which we introdu­
cein this paper. The specific equation above is merely one member of this class and 
was chosen for comparison because it is the simplest member of that class. We find 
that the new schedules typically outperform the classical constant and running aver­
age schedules. Furthermore the new schedules are capable of attaining the optimal 
asymptotic convergence rate for any objective function and exemplar distribution. 
The classical schedules cannot. 

Adaptive schedules are beyond the scope of this short paper (see however Darken 
and Moody, 1991). Nonetheless, all of the adaptive schedules in the literature of 
which we are aware are either second order, and thus too expensive to compute for 
large numbers of parameters, or make no claim to asymptotic optimality. 
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2 Example Task: K-Means Clustering 

As our sample gradient-descent task we choose a k-means clustering problem. Clus­
tering is a good sample problem to study, both for its inherent usefulness and its 
illustrative qualities. Under the name of vector-quantization, clustering is an im­
portant technique for signal compression in communications engineering. In the 
machine learning field, clustering has been used as a front-end for function learning 
and speech recognition systems. Clustering also has many features to recommend it 
as an illustrative stochastic optimization problem. The adaptive law is very simple, 
and there are often many local minima even for small problems. Most significantly 
however, if the means live in a low dimensional space, visualization of the parameter 
vector is simple: it has the interpretation of being a set of low-dimensional points 
which can be easily plotted and understood. 

The k-means task is to locate k points (called "means") to minimize the ex­
pected distance between a new random exemplar and the nearest mean to that 
exemplar. Thus, the function being minimized in k-means is £xllX - A1nr8t112, 
where Mnr8t is the nearest mean to exemplar X. An equivalent form is 
J dX P(X) E:=l Ia(X)IIX - Ma11 2 , where P(X) is the density of the exemplar 
distribution and Ia(X) is the indicator function of the Veronois region correspond­
ing to the ath mean. The stochastic gradient descent algorithm for this function 
IS 

~Mnr8t(t) = -7](tnr8t)[Mnr6t(t) - X(t)), 

i.e. the nearest mean to the latest exemplar moves directly towards the exemplar 
a fractional distance 7](t nr6t ). In a slight generalization from the stochastic gradi­
ent descent algorithm above, tnr6t is the total number of exemplars (including the 
current one) which have been assigned to mean Mnr6t . 

As a specific example problem to compare various schedules across, we take k = 9 
(9 means) and X uniformly distributed over the unit square. Although this would 
appear to be a simple problem, it has several observed local minima. The global 
minimum is where the means are located at the centers of a uniform 3x3 grid over 
the square. Simulation results are presented in figures 2 and 3. 

3 Constant Schedule 

A constant learning rate has been the traditional choice for LMS and backprop­
agation. However, a constant rate generally does not allow the parameter vector 
(the "means" in the case of clustering) to converge. Instead, the parameters hover 
around a minimum at an average distance proportional to 7] and to a variance which 
depends on the objective function and the exemplar set. Since the statistics of the 
exemplars are generally assumed to be unknown, this residual misadjustment cannot 
be predicted. The resulting degradation of other measures of system performance, 
mean squared classification error for instance, is still more difficult to predict. Thus 
the study of how to make the parameters converge is of significant practical interest. 

Current practice for backpropagation, when large misadjustment is suspected, is to 
restart learning with a smaller 7]. Shrinking 7] does result in less residual misad­
justment, but at the same time the speed of convergence drops. In our example 
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clustering problem, a new phenomenon appears as 71 drops-metastable local min­
ima. Here the parameter vector hovers around a relatively poor solution for a very 
long time before slowly transiting to a better one. 

4 Running Average Schedule 

The running average schedule (71(t) = 710/(1 + t)) is the staple of the stochastic ap­
proximation literature (Robbins and Monro, 1951) and of k-means clustering (with 
710 = 1) (Macqueen, 1967). This schedule is optimal for k = 1 (1 mean), but per­
forms very poorly for moderate to large k (like our example problem with 9 means). 
From the example run (Fig. 2A), it is clear that 71 must decrease more slowly in 
order for a good solution to be reached. Still, an advantage of this schedule is that 
the parameter vector has been proven to converge to a local minimum (Macqueen, 
1967). We would like a class of schedules which is guaranteed to converge, and yet 
converges as quickly as possible. 

5 Stochastic Approximation Theory 

In the stochastic approximation literature, which has grown steadily since it began 
in 1951 with the Robbins and Monro paper, we find conditions on the learning rate 
to ensure convergence with optimal speed 1. 

From (Ljung, 1977), we find that 71(t) --+ Arp asymptotically for any 1 > P > 0, 
is sufficient to guarantee convergence. Power law schedules may work quite well in 
practice (Darken and Moody, 1990), however from (Goldstein, 1987) we find that in 
order to converge at an optimal rate, we must have 71(t) --+ cit asymptotically, for c 
~reater than some threshold which depends on the objective function and exemplars 

. When the optimal convergence rate is achieved, IIW - W·W goes like lit. 

The running average schedule goes as 710lt asymptotically. Unfortunately, the con­
vergence rate of the running average schedule often cannot be improved by enlarging 
710, because the resulting instability for small t can outweigh the improvements in 
asymptotic convergence rate. 

6 Search-Then-Converge Schedules 

We now introduce a new class of schedules which are guaranteed to converge and 
furthermore, can achieve the optimal lit convergence rate without stability prob­
lems. These schedules are characterized by the following features. The learning 
rate stays high for a "search time" T in which it is hoped that the parameters will 
find and hover about a good minimum. Then, for times greater than T, the learning 
rate decreases as cit, and the parameters converge. 

IThe cited theory generally does not directly apply to the full nonlinear setting of 
interest in much practical work. For more details on the relation of the theory to practical 
applications and a complete quantitative theory of asymptotic misadjustment, see (Darken 
and Moody, 1991). 

2This choice of asymptotic 11 satisfies the necessary conditions given in (White, 1989). 
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We choose the simplest of this class of schedules for study, the "short-term linear" 
schedule (7](t) = 7]0/(1 +tIT)), so called because the learning rate decreases linearly 
during the search phase. This schedule has c = T7]o and reduces to the running 
average schedule for T = 1. 

7 Conclusions 

We have introduced the new class of "search-then-converge" learning rate schedules. 
Stochastic approximation theory indicates that for large enough T, these schedules 
can achieve optimally fast asymptotic convergence for any exemplar distribution 
and objective function. Neither constant nor "running average" (lIt) schedules 
can achieve this. Empirical measurements on k-means clustering tasks are consis­
tent with this expectation. Furthermore asymptotic conditions obtain surprisingly 
quickly. Additionally, the search-then-converge schedule improves the observed like­
lihood of escaping bad local minima. 

As implied above, k-means clustering is merely one example of a stochastic gradient 
descent algorithm. LMS and on-line backpropagation are others of great interest 
to the learning systems community. Due to space limitations, experiments in these 
settings will be published elsewhere (Darken and Moody, 1991). Preliminaryex­
periments seem to confirm the generality of the above conclusions. 

Extensions to this work in progress includes application to algorithms more sophis­
ticated than simple gradient descent, and adaptive search-then-converge algorithms 
which automatically determine the search time. 
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Figure 2: Example runs with classical schedules on 9-means clustering task. Exemplars 
are uniformly distributed over the square. Dots indicate previous locations of the means. 
The triangles (barely visible) are the final locations of the means. (A) "Running average" 
schedule ('11 = 1/(1 + t», loOk exemplars. Means are far from any minimum and pro­
gressing very slowly. (B) Large constant schedule ('11=0.1), lOOk exemplars. Means hover 
around global minimum at large average distance. (C) Small constant schedule (71=0.01) , 
50k exemplars. Means stuck in metastable local minimum. (D) Small constant sched­
ule ('11=0.01), lOOk exemplars (later in the run pictured in C). Means tunnel out of local 
minimum and hover around global minimum. 
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Figure 3: Comparison of 10 runs over the various schedules on the 9-means cluster­
ing task (as described under Fig. 1). The exemplars are the same for each schedule. 
Misadjustment is defined as IIW - W be"tIl2. (A) Small constant schedule (1]=0.01). 
Note the well-defined transitions out of metastable local minima and large misad­
justment late in the runs. (B) "Running average" schedule (T} = 1/(1 + t)). 6 
out of 10 runs stick in a local minimum. The others slowly head for the global 
minimum. (C) Search-then-converge schedule (T} = 1/(1 + t/4)). All but one run 
head for global minimum, but at a suboptimal rate (asymptotic slope less than -1). 
(D) Search-then-converge schedule (T} = 1/(1 + t/32)). All runs head for global 
minimum at optimally quick rate (asymptotic slope of -1). 


