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Abstract 

Fully recurrent (asymmetrical) networks can be thought of as dynamic 
systems. The dynamics can be shaped to perform content addressable 
memories, recognize sequences, or generate trajectories. Unfortunately 
several problems can arise: First, the convergence in the state space is 
not guaranteed. Second, the learned fixed points or trajectories are not 
necessarily stable. Finally, there might exist spurious fixed points and/or 
spurious "attracting" trajectories that do not correspond to any patterns. 
In this paper, we introduce a new energy function that presents solutions 
to all of these problems. We present an efficient gradient descent algorithm 
which directly acts on the stability of the fixed points and trajectories and 
on the size and shape of the corresponding basin and valley of attraction. 
The results are illustrated by the simulation of a small content addressable 
memory. 

1 INTRODUCTION 

Recurrent neural networks have the capability of storing information in the state 
of their units. The temporal evolution of these states constitutes the dynamics of 
the system and depends on the weights and the input of the network. In the case 
of symmetric connections, the dynamics have been shown to be convergent [2] and 
various procedures are known for finding the weights to compute different tasks. 
In unconstrained neural networks however, little is known about how to train the 
weights of the network when the convergence of the dynamics is not guaranteed. 
In his review paper [1], Hirsh defines the conditions which must be satisfied for 
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some given dynamics to converge, but does not provide mechanisms for finding the 
weights to implement these dynamics. 

In this paper, a new energy function is introduced which reflects the convergence 
and the stability of the dynamics of a network. A gradient descent procedure on 
the weights provides an algorithm to control interesting properties of the dynamics 
including contraction over a subspace, stability, and convergence. 

2 AN ENERGY FUNCTION TO ENFORCE STABILITY 

This section introduces a new energy function which can be used In com­
bination with the backpropagation algorithm for recurrent networks (cf. [6; 
5]). The continuous propagation rule is given by the equation: 

T.. aXi = -x' + g' (~w .. x.) + I-, at "L.J '3 3 , 
j 

(1) 

where x~ is the activation of unit i, gi is a differentiable function, Wij is the weight 
from unit j to unit i, and 1i and Ii are respectively the time constant and the input 
for unit i. A possible discretization of this equation is 

(2) 

(3) 

Where 5:1 is the activation of unit i at the discrete time step t. Henceforth, only 
the discrete version of the propagation equation will be considered and the tilda in 
5: will be omitted to avoid heavy notations . 

2.1 MAKING THE MAPPING CONTRACTING OR EXPANDING 
IN A GIVEN DIRECTION 

Using the Taylor expansion, G(xt + dxt) can be written as 

G(xt + dxt) = G(xt) + G'(xt ) . dxt + o(lIxtlD (4) 

where G'(xt ) is the linear application derived from G(xt) and the term o(llxtlD 
tends toward 0 faster than Ilxtli. The mapping G is contracting in the direction of 
the unitary vector D if 

IIG(xt + fD) - G(xt)1I 
fIlG'(xt ) . DII 
IIG'(x t ) . DII 

where f is a small positive constant. 

< IIfDIl 
< f 

< 1 

Accordingly, the following energy function is considered 

EtJ(X, D) = ~(IIG'(X) . DII2 - I<x? 

(5) 

(6) 
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where Kx is the target contracting rate at X in the direction D. Depending on 
whether we choose Kx larger or smaller than 1, minimizing E3(X, D) will make 
the mapping at X contracting or expanding in the direction D. Note that D can 
be a complex vector. 

The variation of E$(X, D) in respect to Wmn is equal to: 

OE3(X, D) = 2(IIG'(X)DW _ Kx) 2:: (2:: OGi(X) Dj ) (2:: o2G,(X) Dj) 
oWmn . .. OXj . OWmnOXj , ] ] 

(7) 
Assuming the activation function is of the form 2, the gradient operator yields: 

OGi(X) dt dt, 
OXj = 8ij(l- 11) + 11 g (Ui)Wij (8) 

where Ui = Ek WikXk. To compute a!f~:~) the following expression needs to be 
evaluated: 

02Gi(X) dt (,,( ) ""'(~ ~ OXk ) ~ ~ '( ») 
~ ~. = T.. 9 Ui L- UimUknXk + Wik ~ Wij + UimUjng Ui 
uWmn uX]' k uWmn 

(9) 

which in turn requires the evaluation of a&xls • If we assume that for output units, 
Wmn 

Xk = X k and ~ = 0, we will improve the stability of the fixed point when 
8Wmn. 

the visible units are clamped to the input. What we want however, is to increase 
stability for the network when the input units are unclamped (or hidden). This 
means that for every unit (including output units), we have to evaluate ~. 

aWmn 

Since we are at the (unstable) fixed point, we have: 

(10) 

If we derived this equation with respect to Wmn we get: 

() ox· 2:: WijXj (8mi xn + 2:: Wij 0 ] ) 
. . Wmn 

] ] 

(11) 

In matrix form: 
e = g'(y + we) (12) 

Where ei = &~:n' g' is a diagonal (square) matrix such that g~i = g~ (Ej WijXj) 

and g~j = 0 for i -# j (note that g'w -# wg'), y is a vector such that y, = 8miXn and 
W is the weight matrix. If we solve this we get: 

e = (Id - g'wr-1g'y (13) 

That is: 

(14) 
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where the matrix L is given by: 

L,; = 6,; - g' (~Wik"') w'; (15) 

Xk is the activation of the unit at the fixed point so it is the clamped value for the 
visible unit, and xf for the hidden unit (the system converges to a stable fixed 
point when the visible units are clamped). 

To obtain the target rate of contraction Kx at X in the direction D, the weights 
are updated iteratively according to the delta rule: 

D.wij = -Tf aEs(X, L) 
aWij 

(16) 

This updating rule has the advantages and disadvantages of gradient descent algo­
rithms. 

2.2 COMPLEXITY 

The algorithm given above can be implemented in O(N2) storage and O(N3) steps, 
where N is the number of units. This complexity however can be improved by 
avoiding inverting the matrix L using a local algorithm such as the one presented in 
[7]. Another implementation of this energy function can be achieved using Lagrange 
multipliers. This method exactly evaluates &~::n by using a backward pass [9]. Its 
complexity depends on how many steps the network is unfolded in time. 

2.3 GLOBAL STABILITY 

Global convergence can be obtained if D is parallel the eigenvector corresponding 
to the largest eigenvalue of G/(X). Indeed, in that case G/(X) . D is the largest 
eigenvalue of G'(X). If X is a fixed point, the Ostrowski theorem [4; 3] guarantees 
X is stable if and only if the maximum eigenvalue of the Jacobian of G is less than 
1 in modulus. 

Fortunately, the eigenvector corresponding to the largest eigenvalue can easily be 
computed using an efficient iterative method [8]. By choosing D in that direction, 
fixed points can be made stable. 

3 RESULTS 

To simplify the following discussion, V is defined to be the unitary eigenvector 
corresponding to the largest eigenvalue of the Jacobian of G. 

The energy function Es can be used in at least three ways. First it can be used to 
accelerate the convergence toward an internal state upon presentation of a specific 
input p. This is done by increasing the rate of contraction in the direction of V. The 
chosen value for K x , is therefore small with respect to 1. The resulting network 
will settle faster and therefore compute its output sooner. Second, Es can be used 
to neutralize spurious fixed points by making them unstable. If the mapping G 
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is expanding in the direction of V the fixed point will be unstable, and will never 
be reached by the system. The corresponding target value J(xp should be larger 
than 1. Third, and most importantly, it can be used to force stability of the fixed 
points when doing associative memory. Recurrent backpropagation (RBP) [7] can 
be used to make the patterns fixed points, but there is no guarantee that these will 
be stable. By making G contract along the direction V, this problem can be solved. 
Furthermore, one can hope that by making the eigenvalue close to 1, smoothness in 
the derivatives will make the basins of attraction larger. This can be used to absorb 
and suppress spurious neighboring stable fixed points. 

The following experiment illustrates how the unstable fixed points learned with RBP 
can be made more stable using the energy function Ell. Consider a network of eight 
fully connected units with two visible input/output units. The network is subject 
to the dynamic specified by the equation 2. Three patterns are presented on the 
two visible units. They correspond to the coordinates of the three points (0.3,0.7), 
(0.8,0.4) and (0.2,0.1) which were chosen randomly. The learning phase for each 
pattern consists of 1) clamping the visible units while propagating for five iterations 
(to let the hidden units settle), 2) evaluating the difference between the activation 
resulting from the incoming connections of the visible units and the value of the 
presented pattern (this is the error), 3) backpropagating the corresponding error 
signals and 4) updating the weight. This procedure can be used to make a pattern 
a fixed point of the system [6]. Unfortunately, there is no guarantee that these 
fixed points will be stable. Indeed, after learning with RBP only, the maximum 
eigenvalue of the Jacobian of G for each fixed point is shown in table 1 (column 
EV, no E$). As can be seen, the maximum eigenvalue of two of the three patterns 
is larger than one. 

pattern 0 
pattern 1 
pattern 2 

unit 0 
0.30 
0.80 
0.20 

unit 1 
0.70 
0.40 
0.10 

EV, no Ell 
1.063 
1.172 
0.783 

EV, using Ell 
0.966 
0.999 
0.710 

Table 1: Patterns and corresponding norms of maximum eigenvalues (EV) of the 
free system, with and without the stability constraint. 

For a better understanding of what this means, the network can be viewed as a 
dynamic system of 8 units. A projection of the dynamics of the system on the 
visible units can be obtained by clamping these units while propagating for five 
iterations, and computing the activation resulting from the incoming connection. 
The difference between the latter value and the pattern value is a displacement (or 
speed) indicating in which direction in the state space the activations are going. 
The corresponding vector field is plotted on the top figure 1. It can easily be seen 
that as predicted by the eigenvalues, patterns 0 and 1 are unstable (pattern 1 is 
at a saddle point) and pattern 2 is stable. Furthermore there are two additional 
spurious fixed points around (0.83,0.87) and (0.78,0.21). 

The energy function Ell can be combined with REP using the following procedure: 
1) propagate a few epochs until the error is below a certain threshold (10- 5), 2) for 
each pattern, estimate the largest eigenvalue A and the corresponding eigenvector 
V and 3), update the weights using E$ until IAI < J( in direction V. Steps 1 to 3 
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Figure 1: Vector fields representing the dynamics of the state space after learn­
ing the patterns (0.3,0.7), (0.8,0.4) and (0.2,0.1). The field on the top represents 
the dynamics of the network after training with the standard backpropagation al­
gorithm. The field on the bottom represents the dynamics of the network after 
training with the standard backpropagation algorithm combined with Es . 
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are repeated until no more progress is made. The largest eigenvalues after learning 
are shown in table 1 in the last column. As can be noticed, all the eigenvalues 
are less than one and therefore the mapping G is contracting in all directions. The 
dynamics of the network is plotted at the bottom of figure 1. As can clearly be seen, 
all the patterns are now attractors. Furthermore the two spurious fixed points have 
disappeared in the large basin of attraction of pattern 1. This is a net improvement 
over RBP used alone, since the network can now be used as a content addressable 
memory. 

4 DISCUSSION 

In this paper we have introduced mechanisms to control global aspects such as 
stability, attractor size, or contraction speed, of the dynamics of a recurrent network. 
The power of the algorithm is illustrated by implementing a content addressable 
memory with an asymmetric neural network. After learning, the stable fixed points 
of the system coincide with the target patterns. All spurious fixed points have been 
eliminated by spreading the basins of attraction of the target patterns. 

The main limitation of the algorithm resides in using a gradient descent to update 
the weights. Parameters such as the learning rate have to be carefully chosen, for 
optimal performance. Furthermore, there is always a possibility that the evolution 
of the weights might be trapped in a local minimum. 

The complexity of the algorithm can be further improved. In equation 10 for in­
stance, it is assumed that we are at a fixed point. This assumption is not true 
unless the RBP error is really small. This requires that the RBP and the Es al­
gorithms are run alternatively. A faster and more robust method consists in using 
backpropagation in time to compute ~ and is presently under study. 

OWrnn 

Finally, the algorithm can be generalized to control the dynamics around target 
trajectories, such as in [5]. The dynamics is projected onto the hyperplane orthog­
onal to the state space trajectory and constraints can be applied on the projected 
dynamics. 
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