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\Ve describe a series of careful llumerical experiments which measure the 
average generalization capability of neural networks trained on a variety of 
simple functions. These experiments are designed to test whether average 
generalization performance can surpass the worst-case bounds obtained 
from formal learning theory using the Vapnik-Chervonenkis dimension 
(Blumer et al., 1989). We indeed find that, in some cases, the average 
generalization is significantly better than the VC bound: the approach to 
perfect performance is exponential in the number of examples m, rather 
than the 11m result of the bound. In other cases, we do find the 11m 
behavior of the VC bound, and in these cases, the numerical prefactor is 
closely related to prefactor contained in the bound. 

1 INTRODUCTION 

Probably the most important issue in the study of supervised learning procedures is 
the issue of generalization, i.e., how well the learning system can perform on inputs 
not seen during training. Significant progress in the understanding of generalization 
was made in the last few years using a concept known as the Vapnik-Chervonenkis 
dimension, or VC-dimension. The VC-dimension provides a basis for a number of 
powerful theorems which establish worst-case bounds on the ability of arbitrary 
learning systems to generalize (Blumer et al., 1989; Haussler et al., 1988). These 
theorems state that under certain broad conditions, the generalization error f of 
a learning system with VC-dimensioll D trained on m random examples of an 
arbitrary fUllction will with high confidence be no worse than a bound roughly of 
order Dim. The basic requirements for the theorems to hold are that the training 
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and testing examples are generated from the same probability distribution. and that 
the learning system is able to correctly classify the training examples. 

Unfortunately, since these theorems do not calculate the expected generalization 
error but instead only bound it, the question is left open whether expected error 
might lie significantly below the bound. Empirical results of (Ahmad and Tesauro, 
1988) indicate that in at least one case, average error was in fact significantly below 
the VC bound: the error decreased exponentially with the number of examples, 
t "'" exp( -m/mo}, rather than the l/m, result of the bound. Also, recent statistical 
learning theories (Tishby et al., 1989; Schwartz et al., 1990), which provide an 
analytic means of calculating expected performance, indicate that an exponential 
approach to perfect performance could be obtained if the spectrum of possible 
network generalizations has a "gap" near perfect performance. 

\IVe have addressed the issue of whether average performance can surpass \vorst­
case performance t.hrough numerical experiments which measure the average gen­
eralization of simple neural networks trained on a variety of simple fUllctions. Our 
experiments extend the work of (Ahmad and Tesauro, 1988). They test bot.h the 
relevance of the \'\'orst-case VC bounds to average generalization performance, and 
the predictions of exponential behavior due to a gap in the generalization spectrum. 

2 EXPERIMENTAL METHODOLOGY 

T\',,'o pairs of N-dimensional classification tasks were examined in our experiments : 
two linf'ariy sepa.rable functions ("majority" and "real-valued threshold"). anel 
two higlwr-order functions ("majority-XOR" and "threshold-XOR"). rVlajority is 
a Boolean predicate in which the output is 1 if and only if more than half of the 
inputs are 1. The real-valued threshold function is a natural extension of ma.­
jority to t.he continuous space [O,l]N: the output is 1 if and only if the sum of 
the N real-valued inputs is greater than N /2, The majority-XOR function is a 
Boolean function where the output is 1 if and only if the N'th input disagrees 
with the majority computed by the first N - 1 inputs. This is a natural exten­
sion of majority which retains many of its symmetry properties, e.g., the positive 
and negative examples are equally numerous and somewhat uniformly distributed. 
Similarly, threshold-XOR is natural extension of the real-valued threshold function 
\'\'hich maps [0, l]N-l x {O, I} f-+ {0,1}. Here, the output is 1 if and only if the 
N'th input, which is binary, disagrees with the threshold function computed by the 
first N - 1 real-valued inputs. Networks trained on these tasks used sigmoidal units 
and had standard feed-forward fully-connected structures with at most a single hid­
den layer. The training algorithm was standard back-propagation with momentum 
(Rumelhart. et al., 1986). 

A simulator run consisted of training a randomly initialized network on a training 
set of 111 examples of the target function, chosen uniformly from the input space. 
Networks were trained until all examples were classified within a specified margin 
of the correct classification. Runs that failed to converge within a cutoff time of 
50,000 epochs were discal'ded. The genel'alization error of the resulting network 
was then estimated by testing on a set of 2048 novel examples independently drawn 
from the same distribution . The average generalization errol' fol' a given value of 
111 was typically computed by averaging the l'esults of 10-40 simulator runs, ea.ch 
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with a different set of training patterns, test patterns, and random initial weights. 
A wide range of values of 1l1, was examined in this way in each experiment. 

2.1 SOURCES OF ERROR 

Our experiments were carefully controlled for a number of potential sources of error. 
Random errors due to the particular choice of random training patterns, test pat­
terns, and initial weights were reduced to low levels by performing a large number 
of runs and varying each of these in each run. 

\Ve have also looked for systematic errors due to the particular values of learn­
ing rate and momentum constants, initial random weight scale, frequency of weight 
changes, training threshold, and training cutoff time. \Vithin wide ranges of para.m­
eter values, we find no significant dependence of the generalization performance on 
the particular choice of any of these parameters except k, the frequency of weight 
changes. (However, the parameter values can affect the rate of convergence or 
probability of convergence on the training set.) Variations in k appear to alter the 
numerical coefficients of the learning curve, but. not the overall functional form. 

Another potential concern is the possibility of overtraining: even though the training 
set error should decrease monotonically with training time, the test set error might 
reach a minimum and then increase with further training. \Ve have monitored 
hundreds of simulations of both the linearly separable and higher-order tasks, and 
find no significant overtraining in either case. 

Other aspects of the experimental protocol which could affect measured results 
include order of pattern presentation, size of test set, testing threshold , and choice 
of input representation. We find that presenting the patterns in a random order 
as opposed to a fixed order improves the probability of convergence, but does not 
alter the average generalization of runs that do converge. Changing the criterion by 
which a test pattern is judged correct alters the numerical prefactor of the learning 
curve but not the functional form. Using test sets of 4096 patterns instead of 
2048 patterns has no significant effect on measured generalization values. Finally, 
convergence is faster with a [-1,1] coding scheme than with a [0,1] scheme, and 
generalization is improved, but only by numerical constants. 

2.2 ANALYSIS OF DATA 

To determine the functional dependence of measured generalization error e on the 
number of examples In, we apply the standard curve-fitting technique of performing 
linear re~ression on the appropriately ~ransformed data. Thus we .can look for an 
exponentIal law e = Ae-m / mo by plottmg log(e) vs. m and observmg whether the 
transformed data lies on a straight line. We also look for a polynomial law of the 
form e = B/(m + a) by plotting l/e vs. m. \Ve have not attempted to fit to a more 
general polynomial law because this is less reliable, and because theory predicts a 
1/171, law. 

By plotting each experimental curve in both forms, log(e) vs. m and l/e vs. m, we 
can determine which model provides a better fit to the data. This can be done both 
visually and more quantitatively by computing the linear correlation coefficient ,,2 

in a linear least-squares fit. To the extent that one of the curves has a higher value 
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of 1,2 than the other one, we can say that it provides a better model of the data 
than the other functional form. 

We have also developed the following technique to assess absolute goodness-of­
fit . \Ve generate a set of artificial data points by adding noise equivalent to the 
error bars on the original data points to the best-fit curve obtained from the linear 
regression. Regression on the artificial data set yields a value of r2, and repeating 
this process many times gives a distribution of r2 values which should approximate 
the distribution expected with the amount of noise in our data. By comparing the 
value 1'2 from our original data to this generated distribution, we can estimate the 
probability that our functional model would produce data like that we observed. 

3 EXPERIMENTS ON LINEARLY-SEPARABLE 
FUNCTIONS 

Networks with 50 inputs and no hidden units were trained on majority and l'eal­
valued threshold functions, with training set sizes ranging from m = 40 to Tn = 500 
in increments of 20 patterns. Twenty networks were trained for each value of m. A 
total of 3.8% of the binary majority and 7.7% of the real-valued threshold simulation 
runs failed to converge and were discarded. 

The data obtained from the binary majority and real-valued threshold problems 
was tested for fit to the exponential and polynomial functional models, as shown in 
Figure 1. The binary majority data had a correlation coefficient of 1' '2 = 0.982 in 
the exponential fit; this was better than 40% of the "artificial" data sets described 
previously. However, the polynomial fit only gave a value of 1,2 = 0.9(:i6, which 
was bett.er than only 6% of the artificial data sets. We conclude that the binary 
majority data is consistent with an exponential law and not with a 11m law. 

The real-valued threshold data, however, behaved in the opposite manner . The 
exponential fit gave a value of 1'2 = 0.943, which was better than only 14% of the 
artificial data sets. However, the polynomial fit gave a value of 1'2 = 0.996, which 
was better than 40% of the artificial data sets. We conclude that the real-valued 
threshold data closely approximates a 11m law and was not likely to have been 
generated by an exponential law. 

4 EXPERIMENTS ON HIGHER-ORDER FUNCTIONS 

For the majority-XOR and threshold-XOR problems, we used N = 26 input units: 
25 for the "majority" (or threshold) and a single "XOR" unit. In theory, these 
problems can be solved with only two hidden units, but in practice, at least three 
hidden ullit.s were needed for reliable convergence. Training set sizes ranging from 
m = 40 to 111 = 1000 in increments of 20 were studied for both tasks. At each 
value of m., 40 simulations were performed. Of the 1960 simulations, 1702 of the 
binary and 1840 of the real-valued runs converged. No runs in either case achieved 
a perfect score on the test data. 

With both sets of runs, there was a visible change in the shape of the generalization 
curve when the training set size reached 200 samples. We are interested primarily 
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Figure 1: Observed generalization curves for binary majority and real-valued thresh­
old, and their fit to the exponential and polynomial models. Errol' bars denote 9.5% 
confidence intervals for the mean. 

in the asymptotic behavior of these curves, so we restricted our analysis to sample 
sizes 200 and above. As with the single-layer problems, we measured goodness of 
fit to appropriately linearized forms of the exponential and polynomial curves in 
question. Results are plotted in Figure 2. 

It appears that the generalization curve of the threshold-XOR problem is not likely 
to have been generated by an exponential, but is a plausible 11m polynomial. The 
conelation coefficient in the exponential fit is only 1,2 = 0.959 (better than only 
10% of the artificial data sets), but in the polynomial fit is 1,2 = 0.997 (better than 
1'32% of the artificial data sets). 

The binary majority-XOR data, however, appears both visually and from the rela­
tive 7'2 values to fit the exponential model better than the polynomial model. In the 
exponential fit, 1,2 = 0.994, while in the polynomial fit, 1'2 = 0.940. However, we are 
somewhat. cautious because the artificial data test is inconclusive. The exponential 
fit is bett.er than 40% of artificial data sets, but the polynomial fit is better than 
60% of artificial data sets . Also , there appears to be a small component of t.he curve 
that is slower than a pure exponential. 

5 COMPARISON TO THEORY 

Figure 3 plot.s our data for both the first.-order and higher-order tasks compared t.o 
the thol'etical error bounds of (Blumer et aI., 1989) and (Haussler et aI., 1988) . In 
the higher-order case we have used the total number of weights as an estimate of the 
VC-dimension, following (Baum and Haussler, 1989). (Even with this low estimate, 
the bound of (Blumer et aI., 1989) lies off the scale.) All of our experimenta.l 
curves fall below both bounds, and in each case the binary task does asymptotically 
better than the corresponding real-valued task. One should note tha.t the bound in 
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Figure 2: Generalization curves for 26-3-1 nets trained on majority-XOR and 
threshold-XOR, and their fit to the exponential and polynomial models. 

(Haussler et al., 1988) fits the real-valued data to within a small numerical constant. 
However, strictly speaking it may not apply to our experiments because it is for 
Bayes-optimal learning algorithms, and we do not know whether back-propagation 
is Bayes-optimal 

6 CONCLUSIONS 

We have seen that two problems using strict binary inputs (majority and majority­
XOR) exhibited distinctly exponential generalization with increasing training set 
size. This indicates that there exists a class of problems that is asymptotically 
much easier to learn than others of the same VC-dimension. This is not only of 
theoretical interest, but it also hac; potential bearing on what kinds of large-scale 
applications might be tractable with network learning methods. On the other hand, 
merely by making the inputs real instead of binary, we found average error curves 
lying close to the theoretical bounds. This indicates that the worst-cage bounds 
may be more relevant to expected performance than has been previously realized. 

It is interesting that the statistical theories of (Tishby et al., 1989; Schwartz et 
al, 1990) predict the two classes of behavior seen in our experiments. Our future 
research will focus on whether or not there is a "gap" as suggested by these theories. 
Our preliminary findings for majority suggest that there is in fact no gap, except 
possibly an "inductive gap" in which the learning process for some reason tends 
to avoid the near-perfect solutions. If such an inductive gap does not exist, then 
either the theory does not apply to back-propagation, or it must have some other 
mechanism to generate the exponential behavior. 
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Figure 3: (a) The real-valued threshold problem performs roughly within a constant 
factor of the upper bounds predicted in (Blumer et al., 1989) and (Haussler et aI., 
1988), while the binary majority problem performs asymptotically better. (b) The 
threshold-XOR performs roughly within a constant factor of the predicted bound, 
while majority-XOR performs asymptotically better . 
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