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Ab.tract 

The model-bued neural vision Iystem presented here determines the p~ 
aition and identity of three-dimensional objects. Two ltereo imagee of 
a IC8ne are described in terms of Ihape primitives (line segments derived 
from edges in the lcenel) and their relational structure. A recurrent neural 
matching network solves the correlpondence problem by 888igning corre­
Iponding line segments in right and left ltereo images. A 3-D relational 
IC8ne description it then generated and matched by a second neural net­
work against models in a model bue. The quality of the solutions and 
the convergence Ipeed were both improved by using mean field approxi­
mations. 

1 INTRODUCTION 

Many machine vision IYlteDll and, to a large extent, &lao the human visual Iya­
tem, are model bued. The &Cenes are described in terDll of Ihape primitives and 
their relational Itructure, and the vision IYltem triel to find a match between the 
&cene delcriptions and 'familiar' objects in a model bue. In many lituations, IUch 
u robotia applicatioDl, the problem is intrinsically 3-D. Different approaches are 
pOl8ible. Poggio and Edelman (1990) describe a neural network that treat. the 3-D 
object recognition problem u a multivariate approximation problem. A certain 
number of 2-D viewl of the object are used to train a neural network to produce 
the Itandard view of that object. After training, new penpective viewl can be 
recogniled. 

In the approach presented here, the vision IYltem tries to capture the true 3-D 
Itructure of the 8cene. Two Itereo viewl of a lcene are used to generate a 3-D 
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Figure 1: Match of primitive Pato Pi. 

Figure 2: Definitions of r, q, and 6 (left). The function ,..0 (right). 

description of the scene which is then matched against models in a model base. The 
stereo correspondence problem and the model matching problem are solved by two 
recurrent neural networks with very similar architectures. A neuron is assigned to 
every pOl8ible match between primitives in the left and right images or, respectively, 
the scene and the model base. The networks are designed to find the best matches 
by obeying certain uniqueness constraints. 

The networks are robust against the uncertainties in the descriptions of both the 
stereo images and the 3-D scene (Ihadow lines, missing lines). Since a partial match 
is sufficient for a successful model identification, opaque and partially occluded 
objects can be recognized. 

2 THE NETWORK ARCHITECTURE 

Here, a general model matching tuk is considered. The activity of a match neuron 
mai (Figure 1) representl the certainty of a match between a primitive Pa in the 
model base and Pi in the lcene description. The interactions between neurons can be 
derived from the network'i energy function where the fixed points of the network 
correspond to the minima of the energy function. The first term in the energy 
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function evaluates the match between the primitives 

Ep = -1/2 E leoimed· 
at 

(1) 

The function leo. is zero if the type of primitive Po is not equal to the type of 
primitive Pi. If both types are identical. leo. evaluates the agreement between 
parameters pf.(k) and pf(k) which describe properties of the primitives. Here. 
leo. = Io'(EI: /pf.(k) - pf(k)IIc1) is maximum if the parameters of Po and Pi match 
(Figures 1 and 2). 

The evaluation of the match between the relations of primitives in the scene and 
data base is performed by the energy term (Mjoisness, Gindi and Anadan, 1989) 

Es = -1/2 L Xo'~"J moim~i' (2) 
o,~,iJ 

The function Xoi = Io'(E.lp~,~(k)-~J(k)I/C7't) is maximum if the relation between 
Po and P~ matches the relatIon between Pi and Pi' 

The constraint that a primitive in the Kene Ihould only match to one or no primitive 
in the model base (column cODltraint) is implemented by the additional (penalty-) 
energy term (Utans et al .• 1989. Tresp and Gindi, 1990) 

Ec = E[((EmOi)-1)2Emoi). (3) 
i a a 

Ec is equal to zero only if in all columns, the sum over the activations of all neurons 
is equal to one or zero and positive otherwise. 

2.1 DYNAMIC EQUATIONS AND MEAN FIELD THEORY 

2.1.1 MFAI 

The neural network Ihould make binary decisionl, match or no match. but bi­
nary recurrent networks get easily Ituck in local minima. Bad local minima can 
be avoided by using an annealing strategy but annealing is time-conluming when 
simulated on a digital computer. Using a mean field approximation. one can ob­
tain deterministic equations by retaining some of the advantages of the annealing 
process (Peterson and SOderberg, 1989). The network is interpreted as a IYltem of 
interacting units in thermal contact with a heat reservoir of temperature T. Such 
a system minimizes the free energy F = E - TS where 5 is the entropy of the 
system. At T = 0 the energy E is minimized. The mean value va. =< moi > of 
a neuron becomes lIai = 1/(1 + e-u• i/T ) with "oi = -IJE/lJllo" These equations 
can be updated synchronously, asynchronously or solved iteratively by moving only 
a Imall distance from the old value of "a' in the direction of the new mean field. 

At high temperatures T. the IYltem is in the trivial solution va. :: 1/2 VQ, i and 
the activations of all neuronl are in the linear region of the ligmoid function. The 
system can be described by linearized equatioDi. The magnitudes of all eigenValues 
of the corresponding tranlfer matrix are less than 1. At a critical temperature Tc , 
the magnitude of at least one of the eigenvalues becomes greater than one and the 
trivial solution becomes unstable. Tc and favorable weights for the different terms 
in the energy function can be found by an eigenvalue analYlis of the linearized 
equatioDl (Peterson and Soderberg, 1989). 
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2.1.2 MFA, 

The column constraint is satisfied by states with exactly one neuron or DO neuron 
'on' in every column. If only these states are considered in the derivation of the 
mean field equations, one can obtain another set of mean field equations, "ai = 
1 x eUoi/T /(1 + E" eU_i/T) with "ai = -8E/8"ai. 

The column constraint term (Equation 3) drops out of the energy function and 
the energy surface in simplified. The high temperature fixed point corresponds to 
"ai = 1/(N + 1) 'VOl, i where N is the number of rows. 

3 THE CORRESPONDENCE PROBLEM 

To solve the correspondence problem, corresponding lines in left and right images 
have to be identified. A good 888umption is that the appearance of an object in 
the left image is a distortion and shifted venion of the appearance of the object in 
the right image with approximately the same scale and orientation. The machinery 
just developed can be applied if the left image is interpreted as the scene and the 
right image as the model. 

Figure 3 shows two stereo images of a simple scene and the segmentation of left and 
right images into line segments which are the only primitives in this application. 
Lines correspond to the edges, structure and contoun of the objects and shadow 
lines. The length of a line segment pf(l) = Ii is the descriptive parameter attached 
to each line segment Pi. Relations between line segments are only considered if they 
are in a local neighborhood: Xa,,,.ij is equal to zero if not both a) Po is attached to 
line segment p" and b) line segment Pi is attached to line segment Pi' Otherwise, 
Xa,,,.ij = #-,(14)0'' - 4>iil/CT~ + Ira" - riil/CT~ + 19a" - 9iil/CT;) where prj(l) = 4>ij is 
the angle between line segments, prj (2) = riJ the logarithm of the ratio of their 
lengths and pr,/3) = 9ij the attachment point (Shumaker et aI., 1989) (Figure 2). 

Here, we have two uniqueness constraints: only at most one neuron should be 
active in each column or each row. The row constraint is enforced by an energy 
term equiValent to Eo: ER = Ea[«Ei mai) - 1)2 E. rna']' 

4 DESCRIPTION OF THE 3-D OBJECT STRUCTURE 

From the last section, we know which endpoints in the left image correspond to 
endpoints in the right image. If D is the separation of both (in parallel mounted) 
cameras, I the focal lengths of the cameras, Z" II', Z,., II,. the coordinates of a particu­
lar point in left and right images, the 3-D position of the point in camera coordinates 
z, II, z becomes z = DI/(z,. - z,), II = ZII,./ I, Z = ZZ,./ 1+ D/2. This information 
is used to generate the 3-D description of the visible portion of the objects in the 
scene. 

Knowing the true 3-D position of the endpoints of the line segments, the system 
concludes that the chair and the wardrobe are two distinct and spatially separated 
objects and that line segments 12 and 13 in the right image and 12 in the left image 
are not connected to either the chair or the wardrobe. On the other hand, it is not 
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Figure 3: Stereo images of a scene and segmented images. The stereo matching 
network matched all line segments that are present in both images correctly. 

obvious that the shadow lines under the wardrobe are not part of the wardrobe. 

5 MATCHING OBJECTS AND MODELS 

The scene description now must be matched with stored models describing the 
complete 3-D structures of the models in the data base. The model description 
might be constructed by either explicitly measuring the dimensions of the models 
or by incrementally assembling the 3-D structure from several stereo views of the 
models. Descriptive parameters are the (true 3-D) length of line segments I, the 
(true 3-D) angles ~ between line segments and the (true 3-D) attachment points 
q. The knowledge about the 3-D structure allows a segmentation of the scene into 
different objects and the row constraint is only applied to neurons relating to the 
same object 0 in the scene ER' = Eo Ea[«EiEO mal) - 1)2 EiEO vail· 

Figure 4 shows the network after convergence. Except for the occluded leg, all line 
segments belonging to the chair could be matched correctly. All not occluded line 
segments of the wardrobe could be matched correctly except for its left front leg. 
The shadow lines in the image did not find a match. 

6 3-D POSITION 

In many applications, one is also interested in determining the positions of the 
recognized objects in camera coordinates. In general, the transformation between 
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Figure 4: 3-D matching network. 
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an object in a standard frame of reference Xo = (zo, 110, %0) and the transformed 
frame of reference Xs = (z" 11" z,) can be described by Xs = RXo, where R is a 
4 x 4 matrix describing a rotation followed by a translation. R can be calculated if 
Xo and Xs are known for at leut 4 points using, for example, the pseudo inverse or 
an ADALINE. Knowing the coefficients of R, the object position can be calculated. 
If an ADALINE is used, the error after convergence is a meuure of the consistency 
of the transformation. A large error can be used u an indication that either a 
wrong model W&8 matched, or certain primitives were miscl&88ified. 

7 DISCUSSION 

Both M F Al and M F A2 were used in the experiments. The same solutions were 
found in general, but due to the simpler energy 8urface, M F A2 allowed greater time 
steps and therefore converged 5 to 10 times futer. 

For more complex scenes, a hierarchical system could be considered. In the first 
step, simple objects such as 8quares, rectangles, and circles would be identified. 
These would then form the primitives in a second stage which would then recognize 
complete objects. It might also be pOllible to combine these two matching nets 
into one hierarchical net similar to the networks described by Mjolsne&8, Gindi and 
Anadan (1989). 
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