
Distributed Recursive Structure Processing 

Geraldine Legendre 
Department of 
Linguistics 

Yoshiro Miyata 
Optoelectronic 

Computing Systems Center 
University of Colorado 

Boulder, CO 80309-0430· 

Paul Smolensky 
Department of 

Computer Science 

Abstract 

Harmonic grammar (Legendre, et al., 1990) is a connectionist theory of lin­
guistic well-formed ness based on the assumption that the well-formedness 
of a sentence can be measured by the harmony (negative energy) of the 
corresponding connectionist state. Assuming a lower-level connectionist 
network that obeys a few general connectionist principles but is otherwise 
unspecified, we construct a higher-level network with an equivalent har­
mony function that captures the most linguistically relevant global aspects 
of the lower level network. In this paper, we extend the tensor product 
representation (Smolensky 1990) to fully recursive representations of re­
cursively structured objects like sentences in the lower-level network. We 
show theoretically and with an example the power of the new technique 
for parallel distributed structure processing. 

1 Introduction 

A new technique is presented for representing recursive structures in connectionist 
networks. It has been developed in the context of the framework of Harmonic 
Grammar (Legendre et a1. 1990a, 1990b), a formalism for theories of linguistic 
well-formedness which involves two basic levels: At the lower level, elements of the 
problem domain are represented as distributed patterns of activity in a networkj At 
the higher level, the elements in the domain are represented locally and connection 
weights are interpreted as soft rules involving these elements. There are two aspects 
that are central to the framework. 

-The authors are listed in alphabetical order. 

591 



592 Legendre, Miyata, and Smolensky 

First, the connectionist well-formedness measure harmony (or negative "energy"), 
which we use to model linguistic well-formed ness , has the properties that it is p­
reserved between the lower and the higher levels and that it is maximized in the 
network processing. Our previous work developed techniques for deriving harmonies 
at the higher level from linguistic data, which allowed us to make contact with ex­
isting higher-level analyses of a given linguistic phenomenon. 

This paper concentrates on the second aspect of the framework: how particular 
linguistic structures such as sentences can be efficiently represented and processed 
at the lower level. The next section describes a new method for representing tree 
structures in a network which is an extension of the tensor product representation 
proposed in (Smolensky 1990) that allows recursive tree structures to be represented 
and various tree operations to be performed in parallel. 

2 Recursive tensor product representations 

A tensor product representation of a set of structures S assigns to each 8 E S a 
vector built up by superposing role-sensitive representations of its constituents. A 
role decomposition of S specifies the constituent structure of s by assigning to it 
an unordered set of filler-role bindings. For example, if S is the set of strings from 
the alphabet {a, b, chand 8 = cba, then we might choose a role decomposition in 
which the roles are absolute positions in the string (rl = first, r2 = second, ... ) 
and the constituents are the filler/role bindings {b/r2, a/rs, c/rl}. 1 

In a tensor product representation a constituent - i.e., a filler/role binding - is 
represented by the tensor (or generalized outer) product of vectors representing the 
filler and role in isolation: fir is represented by the vector v = f®r, which is in fact 
a second-rank tensor whose elements are conveniently labelled by two subscripts and 
defined simply by vt.pp = ft.prp. 

Where do the filler and role vectors f and r come from? In the most straightforward 
case, each filler is a member of a simple set F (e.g. an alphabet) and each role is 
a member of a simple set R and the designer of the representation simply specifies 
vectors representing all the elements of F and R. In more complex cases, one or 
both of the sets F and R might be sets of structures which in turn can be viewed as 
having constituents, and which in turn can be represented using a tensor product 
representation. This recursive construction of the tensor product representations 
leads to tensor products of three or more vectors, creating tensors of rank three and 
higher, with elements conveniently labelled by three or more subscripts. 

The recursive structure of trees leads naturally to such a recursive construction of 
a tensor product representation. (The following analysis builds on Section 3.7.2 of 
(Smolensky 1990.» We consider binary trees (in which every node has at most two 
children) since the techniques developed below generalize immediately to trees with 
higher branching factor, and since the power of binary trees is well attested, e.g., 
by the success of Lisp, whose basic datastructure is the binary tree. Adopting the 
conventions and notations of Lisp, we assume for simplicity that the terminal nodes 

lThe other major kind of role decomposition considered in (Smolensky 1990) is contex­
tual roles; under one such decomposition, one constituent of cba is "b in the role 'preceded 
by c and followed by a'''. 



Distributed Recursive Structure Processing 593 

of the tree (those with no children), and only the terminal nodes, are labelled by 
symbols or atoms. The set of structures S we want to represent is the union of a set 
of atoms and the set of binary trees with terminal nodes labelled by these atoms. 

One way to view a binary tree, by analogy with how we viewed strings above, is as 
having a large number of positions with various locations relative to the root: we 
adopt positional roles rill labelled by binary strings (or bit vectors) such as Z = 0110 
which is the position in a tree accessed by "caddar = car(cdr(cdr(car)))", that 
is, the left child (0; car) of the right child (1; cdr) of the right child of the left child 
of the root of the tree. Using this role decomposition, each constituent of a tree is 
an atom (the filler) bound to some role rill specifying its location; so if a tree s has 
a set of atoms {fi} at respective locations {zih then the vector representing s is 
8 = Ei fi®rXi' 

A more recursive view of a binary tree sees it as having only two constituents: the 
atoms or subtrees which are the left and right children of the root. In this fully 
recursive role decomposition, fillers may either be atoms or trees: the set of possible 
fillers F is the same as the original set of structures S. 

The fully recursive role decomposition can be incorporated into the tensor product 
framework by making the vector spaces and operations a little more complex than 
in (Smolensky 1990). The goal is a representation obeying, Vs, p, q E S: 

s = cons(p, q) => 8 = p®rO + q®rl (1) 

Here, s = cons(p, q) is the tree with left subtree p and right subtree q, while 
8, p and q are the vectors representing s, p and q. The only two roles in this 
recursive decomposition are ro, rl: the left and right children of root. These roles 
are represented by two vectors rO and rl' 

A fully recursive representation obeying Equation 1 can actually be constructed 
from the positional representation, by assuming that the (many) positional role 
vectors are constructed recursively from the (two) fully recursive role vectors ac­
cording to: 

rxO = rx®rO rxl = rx®rl' 

For example, rOllO = rO®rl ®rl ®rO' 2 Thus the vectors representing positions 
at depth d in the tree are tensors of rank d (taking the root to be depth 0). As 
an example, the tree s = cons(A, cons(B, e)) = cons(p, q), where p = A and q = 
cons(B, e), is represented by 

8 A®rO + B®rOl + C®rll = A®rO + B®rO®rl + C®rl ®rl 

A®rO + (B®rO + C®rl)®rl = p®rO + q®rl, 

in accordance with Equation 1. 

The complication in the vector spaces needed to accomplish this recursive analysis 
is one, that allows us to add together the tensors of different ranks representing 
different depths in the tree. All we need do is take the direct sum of the spaces of 
tensors of different rank; in effect, concatenating into a long vector all the elements 

'By adopting this definition of rXt we are essentially taking the recursive structure that 
is implicit in the subscripts z labelling the positional role vectors, and mapping it into the 
structure of the vectors themselves. 



594 Legendre, Miyata, and Smolensky 

of the tensors. For example, in S = cons(A, cons(B, C», depth 0 is 0, since s isn't an 

atom; depth 1 contains A, represented by the tensor S~~1 = AI;'rOP1' and depth 2 

contains Band C, represented by S~~IP2 = Bl;'r Opl rlp2 + Cl;'rlpl rl p2 ' The tree 

I . h d h {S(O) (1) S(2) } h as a who e IS t en represente by t e sequence s = 1;" SI;'P1' I;'P1P2"" were 

the tensor for depth 0, S~), and the tensors for depths d> 2, S~~l"'PI.' are all zero. 

We let V denote the vector space of such sequences of tensors of rank 0, rank I, 
... , up to some maximum depth D which may be infinite. Two elements of V are 
added (or "superimposed") simply by adding together the tensors of corresponding 
rank. This is our vector space for representing trees. a 

The vector operation cons for building the representation of a tree from that of its 
two subtrees is given by Equation 1. As an operation on V this can be written: 

cons : ({P~), P~~I' P~J1P2""}, {Q~), Q~~l' Q~~lP2''''}) 1-+ 

{ (0) (1) } {Q(O) (1) } 
O'PI;' rO P1 'PI;'P1r OP2"" + 0, I;' rlp1 ,QI;'Pl rlP2"" 

(Here, 0 denotes the zero vector in the space representing atoms.) In terms of 
matrices multiplying vectors in V, this can be written 

cons(p, q) = W consO p + W consl q 

(parallel to Equation 1) where the non-zero elements of the matrix W consO are 

W 0 -rO cons I;'P1P2,,,PI.PI.+l'I;'P1P2· .. PI. - PHI 

and W consl is gotten by replacing ro with rl' 

Taking the car or cdr of a tree - extracting the left or right child - in the recursive 
decomposition is equivalent to unbinding either "0 or 7'1. As shown in (Smolensky 
1990, Section 3.1), if the role vectors are linearly independent, this unbinding can be 
performed accurately, via a linear operation, specifically, a generalized inner product 
(tensor contraction) of the vector representing the tree with an unbinding vector 
Uo or ul' In general, the unbinding vectors are the dual basis to the role vectors; 
equivalently, they are the vectors comprising the inverse matrix to the matrix of 
all role vectors. If the role vectors are orthonormal (as in the simulation discussed 
below), the unbinding vectors are the same as the role vectors. The car operation 
can be written explicitly as an operation on V: 

{S(O) (1) (2) } 
car: 1;" SI;'P' SI;'P1P1 ' . .. .-

{Ep1 S~~l UOP1 ' Ep2 S~~IP2 UOp2 ' E p, S~~lP2P' UOp,' .. -} 

3In the connectionist implementation simulated below, there is one unit for each element 
of each tensor in the sequence. In the simulation we report, seven atoms are represented 
by (binary) vectors in a three-dimensional space, so cp = O,1,2j rO and rl are vectors in 
a two-dimensional space, so p = 0,1. The number of units representing the portion of V 
for depth d is thus 3 . 24 and the total number of units representing depths up to D is 
3(2D+l - 1). In tensor product representations, exact representation of deeply embedded 
structure does not come cheap. 



Distributed Recursive Structure Processing 595 

(Replacing uo by u1 gives cdr.) The operation car can be realized as a matrix 
W car mapping V to V with non-zero elements: 

W car CPPJ P2""PI..CPP1 P2"""PI.PHJ = uOPI.+J· 

W cdr is the same matrix, with uo replaced by u 1. 4 

One of the main points of developing this connectionist representation of trees 
is to enable massively parallel processing. Whereas in the traditional sequential 
implementation of Lisp, symbol processing consists of a long sequence of car, cdr, 
and cons operations, here we can compose together the corresponding sequence of 
W car, W cdr' W consO and W cons1 operations into a single matrix operation. 
Adding some minimal nonlinearity allows us to compose more complex operations 
incorporating the equivalent of conditional branching. We now illustrate this with 
a simple linguistically motivated example. 

3 An example 

The symbol manipulation problem we consider is that of transforming a tree rep­
resentation of a syntactic parse of an English sentence into a tree representation of 
a predicate-calculus expression for the meaning of the sentence. We considered two 

possible syntactic structures: simple active sentences of the form ~ and passive 

sentences of the form~. Each was to be transformed into a tree represent­

ing V(A,P), namely v~. Here, the agent & and patient.£. of the verb V are 
both arbitrarily complex noun phrase trees. (Actually, the network could handle 
arbitrarily complex V's as well.) Aux is a marker for passive (eg. is in is feared.) 

The network was presented with an input tree of either type, represented as an 
activation vector using the fully recursive tensor product representation developed in 
the preceding section. The seven non-zero binary vectors oflength three coded seven 
atoms; the role vectors used were technique described above. The desired output 
was the same tensorial representation of the tree representing V(A, B). The filler 
vectors for the verb and for the constituent words of the two noun phrases should 
be unbound from their roles in the input tree and then bound to the appropriate 
roles in the output tree. 

Such transformation was performed, for an active sentence, by the operation 
cons ( cadr( s), cons( car( s), cddr( s))) on the input tree s, and for a passive sentence, 
by cons(cdadr(s), cons(cdddr(s), car(s))). These operations were implemented in 
the network as two weight matrices, W a and W p' 5 connecting the input units to 
the output units as shown in Figure 1. In additIon, the network had a circuit for 

tNote that in the caSe when the {rO,rl} are orthonormal, and therefore uo = 1'0, 

W car = W consO T i similarly, W cdr = W consl T . 

&The two weight matrices were constructed from the four basic matrices as Wa -
W consO W car W cdr + W cons1 (W consO W car + W cons1 W cdr W cdr) and Wp = 
W consO W cdr W car W cdr + W consl (W consO W cdr W cdr W cdr + W cons1 W car). 



596 Legendre, Miyata, and Smolensky 

Output = cons{V,cons{C,cons(A,B») 

Input = cons(cons(A,B),cons(cons(Aux,V),cons(by,C)) 

Figure 1: Recursive tensor product network processing a passive sentence 

determining whether the input sentence was active or passive. In this example, it 
simply computed, by a weight matrix, the caddr of the input tree (where a passive 
sentence should have an Aux), and if it was the marker Aux, gated (with sigma-pi 
connections) W p , and otherwise gated Wa. 

Given this setting, the network was able to process arbitrary input sentences of 
either type, up to a certain depth (4 in this example) limited by the size of the 
network, properly and generated correct case role assignments. Figure 1 shows the 
network processing a passive sentence «A.B).«Aux.V).(by.C))) as in All connection­
ist, are feared by Minsky and generating (V.(C.(A.B») as output. 

4 Discussion 

The formalism developed here for the recursive representation of trees generates 
quite different representations depending on the choice of the two fundamental role 
vectors rO and rl and the vectors for representing the atoms. At one extreme is 
the trivial fully local representation in which one connectionist unit is dedicated 
to each possible atom in each possible position: this is the special case in which 
rO and rl are chosen to be the canonical basis vectors (1 0) and (0 I), and the 
vectors representing the n atoms are also chosen to be the canonical basis vectors 
of n-space. The example of the previous section illustrated the case of (a) linearly 
dependent vectors for atoms and (b) orthonormal vectors for the roles that were 
"distributed" in that both elements of both vectors were non-zero. Property (a) 
permits the representation of many more than n atoms with n-dimensional vectors, 
and could be used to enrich the usual notions of symbolic computation by letting 
"similar atoms" be represented by vectors that are closer to each other than are 
"dissimilar atoms." Property (b) contributes no savings in units of the purely 
local case, amounting to a literal rotation in role space. But it does allow us 



Distributed Recursive Structure Processing 597 

to demonstrate that fully distributed representations are as capable as fully local 
ones at supporting massively parallel structure processing. This point has been 
denied (often rather loudly) by advocates oflocal representations and by such critics 
as (Fodor & Pylyshyn 1988) and (Fodor & McLaughlin 1990) who have claimed 
that only connectionist implementations that preserve the concatenative structure 
of language-like representations of symbolic structures could be capable of true 
structure-sensitive processing. 

The case illustrated in our example is distributed in the sense that all units corre­
sponding to depth d in the tree are involved in the representation of all the atoms 
at that depth. But different depths are kept separate in the formalism and in the 
network. We can go further by allowing the role vectors to be linearly dependent, 
sacrificing full accuracy and generality in structure processing for representation of 
greater depth in fewer units. This case is the subject of current research, but space 
limitations have prevented us from describing our preliminary results here. 

Returning to Harmonic Grammar, the next question is, having developed a fully 
recursive tensor product representation for lower-level representation of embedded 
structures such as those ubiquitous in syntax, what are the implications for well­
formedness as measured by the harmony function? A first approximation to the 
natural language case is captured by context free grammars, in which the well­
formedness of a subtree is independent of its level of embedding. It turns out that 
such depth-independent well-formed ness is captured by a simple equation governing 
the harmony function (or weight matrix). At the higher level where grammatical 
"rules" of Harmonic Grammar reside, this has the consequence that the numerical 
constant appearing in each soft constraint that constitutes a "rule" applies at all 
levels of embedding. This greatly constrains the parameters in the grammar. 

References 

[1] J. A. Fodor and B. P. McLaughlin. Connectionism and the problem of system­
aticity: Why smolensky's solution doesn't work. Cognition, 35:183-204, 1990. 

[2] J. A. Fodor and Z. W. Pylyshyn. Connectionism and cognitive architecture: A 
critical analysis. Cognition, 28:3-71, 1988. 

[3] G. Legendre, Y. Miyata, and P. Smolensky. Harmonic grammar - a formal 
multi-level connectionist theory of linguistic well-formedness: Theoretical foun­
dations. In the Proceeding. of the twelveth meeting of the Cognitive Science 
Society, 1990a. 

[4] G. Legendre, Y. Miyata, and P. Smolensky. Harmonic grammar - a formal multi­
level connectionist theory of linguistic well-formedness: An application. In the 
Proceedings of the twelveth meeting of the Cognitive Science Society, 1990b. 

[5] P. Smolensky. Tensor product variable binding and the representation of sym­
bolic structures in connectionist networks. Artificial Intelligence, 46:159-216, 
1990. 


