
Navigating through Temporal Difference

Peter Dayan
Centre for Cognitive Science &. Department of Physics

University of Edinburgh
2 Buccleuch Place, Edinburgh EH8 9LW

dayantcns.ed.ac.uk

Abstract

Barto, Sutton and Watkins [2] introduced a grid task as a didactic ex­
ample of temporal difference planning and asynchronous dynamical pre>­
gramming. This paper considers the effects of changing the coding of the
input stimulus, and demonstrates that the self-supervised learning of a
particular form of hidden unit representation improves performance.

1 INTRODUCTION

Temporal difference (TD) planning [6, 7] uses prediction for control. Consider an
agent moving around a finite grid such as the one in figure 1 (the agent is incapable
of crossing the barrier) trying to reach a goal whose position it does not know. If
it can predict how far away from the goal it is at the current step, and how far
away from the goal it is at the next step, after making a move, then it can decide
whether or not that move was helpful or harmful. If, in addition, it can record this
fact, then it can learn how to navigate to the goal. This generation of actions from
predictions is closely related to the mechanism of dynamical programming.

TD is used to learn the predictions in the first place. Consider the agent moving
around randomly on the grid, receiving a negative reinforcement of -1 for every
move it makes apart from moves which take it onto the goal. In this case, if it can
estimat.e from every location it visits, how much reinforcement (discounted by how
soon it arrives) it will get before it next reaches the goal, it will be predicting how
far away it is, based on the random method of selecting actions. TD's mechanism
of learning is to force the predictions to be consistent; the prediction from location
a should be -1 more than the average of the predictions from the locations that can
be reached in one step (hence the extra -1 reinforcement) from a.

464

Navigating Through Temporal Difference 465

If the agent initially selects each action with the same probability, then the estimate
of future reinforcement from a will be monotonically related to how many steps a
is away from the goal. This makes the predictions useful for criticising actions as
above. In practice, the agent will modify its actions according to this criticism at
the same time as learning the predictions based on those actions.

Barto, Sutton and Watkins [2] develop this example, and show how the TD mech­
anism coupled with a punctate representation of the stimulus (referred to as'RBsw
below) finds the optimal paths to the goal. 'RBsw ignores the cues shown in figure 1,
and devotes one input unit to each location on the grid, which fires if and only if
the agent is at that place.

TD methods can however work with more general codes. Section 2 considers al­
ternative representations, including ones that are sensitive to the orientation of the
agent as it moves through the grid, and section 3 looks at a restricted form of la.­
tent learning - what the agent can divine about its environment in the absence of
reinforcement. Both techniques can improve the speed of learning.

2 ALTERNATE REPRESENTATIONS

Stimulus representations, the means by which the agent finds out from the environ­
ment where it is, can be classified along two dimensions; whether they are punctate
or distributed, and whether they are directionally sensitive or in register with the
world.

Over most of the grid, a 'sensible' distributed representation, such as a coarse-coded
one, would be expected to make learning faster, as information about the value and
action functions could be shared across adjacent grid points. There are points of
discontinuity in the actions, as in the region above the right hand arm of the barrier,
but they are few. In his PhD thesis [9], Watkins considers a rather similar problem
to that in figure I, and solves it using his variant ofTD, Q-Iearning, based on a CMAC

[1] coarse-coded representation of the space. Since his agent moves in a continuous
bounded space, rather than being confined merely to discrete grid points, something
of this sort is anyway essential. After the initial learning, Watkins arbitrarily makes
the agent move ten times more slowly in a closed section of the space. This has a
similar effect to the barrier in inducing a discontinuity in the action space. Despite
the CMACS forcing the system to share information across such discontinuities, they
were able to learn the task quickly.

The other dimension over which representations may vary involves the extent to
which they are sensitive to the direction in which the agent is facing. This is of
interest if the agent must construe its location from the cues around the grid. In this
case, rather than moving North, South, East or West, which are actions registered
with the world, the agent should only move Ahead, Left or Right (Behind is disabled
as an additional constraint), whose effects are also orientation dependent. This,
together with the fact that the representation will be less compact (it having a
larger input dimensionality) should make learning slower. Dynamical programming
and its equivalents are notoriously subject to Bellman's curse of dimensionality, an
engineering equivalent of exponential explosion in search.

Table 1 shows four possible representations classified along these two dimensions.

466 Dayan

Coarse ness
Directionally Punctate Distributed

Sensltlve R,x RA
Insensltlve 'RBSW 'RCMAC

Table 1: Representations.

'RBSW is the representation Barto, Sutton and Watkins used. R,x is punctate
and directionally sensitive - it devotes four units to every grid point, one of which
fires for each possible orientation of the agent. 'Rc~IAC' the equivalent of Watkins'
representation, was not simulated, because its capabilities would not differ markedly
from those of the mapping-based representation developed in the next section.

n A is rather different from the other representations; it provides a test of a represen­
tation which is more directly associated with the sensory information that might be
available directly from the cues. Figure 2 shows how 'RA works. Various identifiable
cues, C1 . . . Cc (c = 7 in the figure) are scattered around the outside of the grid,
and the agent has a fictitious 'retina' which rotates with it. This retina is divided
into a number of angular buckets (8 in the figure), and each bucket has c units, the
iSh one of which responds if the cue Ci is visible in that bucket. This representation
is clearly directionally sensitive (if the agent is facing a different way, then so is its
retina, and so no cue will be visible in the same bucket as it was before), and also
distributed, since in general more than one cue will be visible from every location.

Note that there is no restriction on the number of units that can fire in each bucket
at any time - more than one will fire if more than one cue is visible there. Also,
under the present system 'RA will in general not work if its coding is ambiguous
- grid points must be distinguishable. Finally, it should be clear that 'RA is not
biologically plausible.

Figure 3 shows the learning curves for the three representations simulated. Each
point is generated by switching off the learning temporarily after a certain number
of iterations, starting the agent from everywhere in the grid, and averaging how
many steps it takes in getting to the goal over and above the minimum necesary. It
is apparent that n.x is substantially worse, but, surprisingly, that 'RA is actually
better than 'RBSW . This implies that the added advantage of its distributed na­
ture more than outweighs its disadvantages of having more components and being
directionally sensitive.

One of the motivations behind studying alternate representations is the experimen­
tal findings on place cells in the hippocampi of rats (amongst other species). These
are cells that fire only when the rat is at a certain location in its environment.
Although their existence has led to many hypotheses about rat cognitive mapping
(see [5J for a substantial discussion of place cells and mapping), it is important to
note that even with a map, there remains the computational1y intensive problem of
navigation addressed, in this paper, by TD. 'RA, being closely related to the input
stimuli is quite unlike a place cell code - the other representations all bear some
similarities.

Navigating Through Temporal Difference 467

3 GOAL-FREE LEARNING

One of the problems with the TD system as described is that it is incapable oflatent
learning in the absence of reinforcement or a goal. If the goal is just taken away, but
the -1 reinforcements are still applied at each step, then the values assigned to each
location will tend to -00. If both are removed, then although the agent will wander
about its environment with random gay abandon, it will not pick up anything that
could be used to speed subsequent learning. Latent learning experiments with rats
in dry mazes prove fairly conclusively that rats running mazes in the absence of
rewards and punishments learn almost as much as rats that are reinforced.

One way to solve this problem is suggested by Sutton's DYNA architecture [7].
Briefly, this constructs a map of place x action -+ next place, and takes steps
in the fictitious world constructed from its map in-between taking steps in the real
world, as a way of ironing out the computational 'bumps' (ie inconsistencies) in the
value and action functions.

Instead, it is possible to avoid constructing a complete map by altering the repre­
sentation of the environment used for learning the prediction function and optimal
actions . The section on representations concluded that coarse-coded representations
are generally better than punctate ones, since information can be shared between
neighbouring points. However, not all neighbouring points are amenable to this
sharing, because of discontinuities in the value and action functions. If there were
a way of generating a coarse coded representation (generally from a punctate one)
that is sensitive to the structure of the task, rather than arbitrarily assigned by
the environment, it should provide the base for faster learning still. In this case,
neighbouring points should only be coded together if they are not separated by the
barrier. The initial exploration would allow the agent to learn this much about the
structure of the environment.

Consider a set of units whose job is to predict the future discounted sum of firings
of the raw input lines. Using 'R.Bsw during the initial stage of learning when the
act.ions are still random, if the agent is at location (3,3) of the grid, say, then the
discounted prediction of how often it will be in (3,4) (ie the frequency with which
the single unit representing (3,4) will fire) will be high, since this location is close.
However, the prediction for (7,11) will be low, because it is very unlikely to get
there quickly. Consider the effect of the barrier: locations on opposite sides of it, eg
(1,6) and (2,6), though close in the Euclidean (or Manhattan) metric on the grid,
are far apart in the task. This means that the discounted prediction of how often
the agent will be at (1,6) given that it starts at (2,6), will be proportionately lower.

Overall, the prediction units should act like a coarse code, sensitive to the struc­
ture of the task. As required, this information about the environment is entirely
independent of whether or not the agent is reinforced during its exploration. In
fact, the resulting 'map' will be more accurate if it is not, as its exploration will be
more random. The output of the prediction units is taken as an additional source
of information for the value and action functions.

Since their main aim is to create intelligently distributed representations from punc­
tate ones, it is only appropriate to use these prediction units for 'RBsw and 'R4X '

Figure 4 compares average learning curves for 'RBsw with and without these ex-

468 Dayan

tra mapping units, and with and without 6000 steps of latent learning (LL) in the
absence of any reinforcement. A significant improvement is apparent.

Figure 5 shows one set of predictions based on the 1lBsw representation! after a
few un-reinforced iterations. The predictions are clearly fairly well developed and
smooth - a predictable exponentially decaying hump. The only deviations from
this are at the barrier and along the edges, where the effects of impermeability and
immobility are apparent.

Figure 6 shows the same set of predictions but after 2000 reinforced iterations, by
which time the agent reaches the goal almost optimally. The predictions degenerate
from being roughly radially symmetric (bar the barrier) to being highly asymmetric.
Once the agent has learnt how to get to the goal from some location, the path it will
follow, and so the locations it will visit from there, is largely fixed. The asymptotic
values of the predictions will therefore be 0 for units not on the path, and -(for
those on the path, where r is the number of steps since the agent's start point and
'Y is the discounting factor weighting immediate versus distant reinforcement. This
is a severe limitation since it implies that the topological information present in the
early stages of learning disappears evaporates, and with it almost all the benefits
of the prediction units.

4 DISCUSSION

Navigation comprises two problems; where the agent and the goals in its environ­
ment are, and how it can get to them. Having some form of cognitive map, as is
suggested by the existence of place cells, addresses the first, but leaves open the
second. For the case of one goal, the simple TD method described here is one
solution.

TD planning methods are clearly robust to changes in the way the input stimu­
lus is represented. Distributed codes, particularly ones that allow for the barrier,
make learning faster. This is even true for 1lA' which is sensitive to the orientation
of the agent. All these results require each location to have a unique representa­
tion - Mozer and Bachrach [4] and Chrisley [3] and references therein look at how
ambiguities can be resolved using information on the sequence of states the agent
traverses.

Since these TD planning methods are totally general, just like dynamical program­
ming, they are unlikely to scale well. Some evidence for this comes from the rel­
atively poor performance of 1l.x , with its quadrupled input dimension. This puts
the onus back either onto dividing the task into manageable chunks, or onto more
sophisticated representation.

A cknow ledgements

I am very grateful to Jay Buckingham, Kate Jeffrey, Richard Morris, Toby Tyrell,
David Willshaw, and the attendees of the PDP Workshop at Edinburgh, the Con­
nectionist Group at Amherst, and a spatial learning workshop at King's College
Cambridge for their helpful comments. This work was funded by SERC.

1 Note that these are normalised to a maximum value of 10, for graphical convenience.

Navigating Through Temporal Difference 469

References

[1] Albus, JS (1975). A new approach to manipulator control: the Cerebellar
Model Articulation Controller (CMAC). Transactions of the ASME: Journal
of Dynamical Systems, Measurement and Control, 97, pp 220-227.

[2] Barto, AG, Sutton, RS &. Watkins, CJCH (1989). Learning and Sequential
Decision Making. Technical Report 89-95, Computer and Information Science,
University of Massachusetts, Amherst, MA.

[3] Chrisley, RL (1990). Cognitive map construction and use: A parallel dis­
tributed approach. In DS Touretzky, J Elman, TJ Sejnowski, &. GE Hinton,
editors, Proceedings of the 1990 Con nectionist M odds Summer School. San
Mateo, CA: Morgan Kaufmann.

[4] Mozer, MC, &. Bachrach, J (1990). Discovering the structure of a reactive
en vironment by exploration. In D Touretzky, editor, Advances in Neurallnfor­
mation Processing Systems, £, pp 439-446. San Mateo, CA: Morgan Kaufmann.

[5] O'Keefe, J & Nadel, L (1978). The Hippocampus as a Cognitive Map. Oxford,
England: Oxford University Press.

[6] Sutton, RS (1988). Learning to predict by the methods of temporal difference.
Machine Learning, 3, pp 9-44.

[7] Sutton, RS (1990). Integrated architectures for learning, planning, and reacting
based on approximating dynamic progranuning. In Proceedings of the Seventh
International Conference on Machine Learning. San Mateo, CA: Morgan Kauf­
mann.

[8] Sutton, RS, &. Barto, AG. To appear. Time-derivative models of Pavlovian
conditioning. In M Gabriel &. JW Moore, editors, Learning and Computational
Neuroscience. Cambridge, MA: MIT Press.

[9J \Vatkins, CJCH (1989). Learning from Delayed Rewards. PhD Thesis. Univer­
sity of Cambridge, England.

Cl
Agall

\

C4 \
\

l\ ,
C2

........

Cues

,
\
\ cs Goal

Fig 1: The grid task

C4

C6

C1

C2

~ arrier

C3

Cl

OriCIIlltloD

'Retina'

Anplar bucket

cs

C6

C1

•• Dot rlrina
1. flrina

C3

Fig 2: The 'retina' for 1lA

470 Dayan

Average extra
steps to goal

200 --- 4X
BSW
A

150
, , , 1 , ,

'I , .)

100 1\
\ I
~
l
1\1

50 ~I
I .1
~
,~

" 0
,

1 10 100 1000
Learning iterations

Fig 3: Different representations

Fig 5: Initial predictions from (5,6)

Average extra
steps to goal

200 No map

--- Map, DO LL
Map, LL

150

,
\ , ,
\ 100

,

" \
" \ ,

" \
" \

50

0
1 10 100 1000

Learning iterations

Fig 4: Mapping with 'RBSW

Fig 6: Predictions after 2000
iterations

