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This work presents an Attractor Neural Network (ANN) model of Re­
call and Recognition. It is shown that an ANN model can qualitatively 
account for a wide range of experimental psychological data pertaining 
to the these two main aspects of memory access. Certain psychological 
phenomena are accounted for, including the effects of list-length, word­
frequency, presentation time, context shift, and aging. Thereafter, the 
probabilities of successful Recall and Recognition are estimated, in order 
to possibly enable further quantitative examination of the model. 

1 Motivation 

The goal of this paper is to demonstrate that a Hopfield-based [Hop82] ANN model 
can qualitatively account for a wide range of experimental psychological data per­
taining to the two main aspects of memory access, Recall and Recognition. Recall 
is defined as the ability to retrieve an item from a list of items (words) originally 
presented during a previous learning phase, given an appropriate cue (cued RecalQ, 
or spontaneously (free RecalQ. Recognition is defined as the ability to successfully 
acknowledge that a certain item has or has not appeared in the tutorial list learned 
before. 

The main prospects of ANN modeling is that some parameter values, that in former, 
'classical' models of memory retrieval (see e.g. [GS84]) had to be explicitly assigned, 
can now be shown to be emergent properties of the model. 
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2 The Model 

The model consists of a Hopfield ANN, in which distributed patterns representing 
the learned items are stored during the learning phase, and are later presented as 
inputs during the test phase. In this framework, successful Recall and Recognition 
is defined. Some additional components are added to the basic Hopfield model to 
enable the modeling of the relevant psychological phenomena. 

2.1 The Hopfield Model 

The Hopfield model's dynamics are composed of a non-linear, iterative, asyn­
chronous transformation of the network state [Hop82]. The process may include 
a stochastic noise which is analogous to the 'temperature' T in statistical mechan­
ics. Formally, the Hopfield model is described as follows: Let neuron's i state be a 
binary variable Si, taking the values ± 1 denoting a firing or a resting state, corre­
spondingly. Let the network's state be a vector S specifying the binary values of 
all its neurons. Let Jij be the synaptic strength between neurons i and j. Then, 

hi, the input 'field' of neuron i is given by hi = L:f# JijSj. The neuron's dynamic 
behavior is described by 

Si (t + 1) = { 1, 
-1, 

with probability ~(1 + tgh( ~» 
with probability ~(1 - tgh( ~» 

Storing a new memory pattern eJ.' in the network is performed by modifying every 
ij element of the syna.ptic connection matrix according to JlYw = Ji1d + -keJ.' ieJ.' j. 
A Hopfield network will always converge to a stable state, and every stored memory 
is an attractor having an area surrounding it termed its basin of attraction [Hop82]. 
In addition to the stored memories, also other, non-memory states exist as stable 
states (local minima) of the network [AGS85]. The maximal number m of (randomly 
generated) memory patterns which can be stored in the basic Hopfield network of 
n neurons is m = eke • n, eke :::::: 0.14 [AGS85]. 

2.2 Recall and Recognition in the model's framework 

2.2.1 Recall 

Recall is considered successful when upon starting from an initial cue the network 
converges to a stable state which corresponds to the learned memory nearest to 
the input pattern. Inter-pattern distance is measured by the Hamming distance 
between the input and the learned item encodings. If the network converges to a 
non-memory stable state, its output will stand for a 'failure of recall' response. 1. 

IThe question of "How do such non-memory states bear the meaning of 'recall failure'?" 
is out of the scope of this work. However, a possible explanation is that during the learning 
phase 'meaning' is assigned to the stored patterns via connections formed with external 
patterns, and since non-memory states lack such associations with external patterns, they 
are 'meaningless', yielding the 'recall failure' response. Another possible mechanism is that 
every output pattern generated in the recall process passes also a recognition phase so that 
non-memory states are rejected, (see the following paragraph describing recognition in our 
model). 
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2.2.2 Recognition 

Recognition is considered successful when the network arrives at a stable state dur­
ing a time interval A, beginning from input presentation. In general, the shorter 
the distance between an input and its nearest memory, the faster is its convergence 
[AM88, KP88, RY90]. Since non-memory (non-learned) stable states have higher 
energy levels and much shallower basins of attraction than memorized stable states 
[AGS85, LN89], convergence to such states takes significantly longer timer. There­
fore, there exists a range of possible values of A that enable successful recognition 
only of inputs similar to one of the stored memories. 

2.3 Other features of the model 

• The context of the psychological experiments is represented as a substring of 
the input's encoding. In order to minimize inter-pattern correlation, the size of 
the context encoding relative to the total size of the memory encoding is kept 
small . 

• The total associational linkage of a learned item, is modeled as an external 
field vector E. When a learned memory pattern eJ.' is presented to the network, 
the value of the external field vector generated is Ei = h . ~J.', where h is an 
'orientation' coefficient, expressing the association strength. 

Additional features, including a modified storage equation accounting for learning 
taking place at the test phase, and a storage decay parameter, are described in 
[RY90]. 

3 The Modeling of experimental data. 

Regarding every phenomenon discussed, a brief description of the psychological 
findings is followed by an account of its modeling. We rely on the known results 
pertaining to Hopfield models to show that qualitatively, the psychological phenom­
ena reviewed are emergent properties of the model. When such analytical evidence 
is lacking, simulations were performed in order to account for the experimental 
data. For a review of the psychological literature supporting the findings modeled 
see [GS84]. 

The List-Length Effect: It is known that the probability of successful Recall or 
Recognition of a particular item decreases as the length of list of learned items 
lllcreases. 
List length is expressed in memory load. Since It has been shown that the 
width of the memories basins of attraction monotonically decreases following 
an approximately inverse parabolic curve [Wei85], Recall performance should 
decrease as memory load is increased. We have examined the convergence time 
of the same set of input patterns at different values of memory load. As demon­
strated in Fig. 1, it was found tha.t, as the memory load is increased, successful 
convergence has occurred (on the average) only after an increasingly growing 
number of asynchronous iterations. Hence, convergence takes more time and 
can result in Recognition failure, although memories' stability is maintained 
till the critical capacity a c is reached. 
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The word-frequency effect: The more frequent a word is in language, the prob­
abilit.y of recalling it increases, while the probability of recognizing it decreases. 

A word's frequency in the language is assumed to effect its retrieval through 
the stored word's semantic relations and associa.tions [Kat85, NCBK87]. It 
is assumed, that relative to low frequency words, high frequency words have 
more semantic relations and therefore more connections between the patterns 
representing them and other patterns stored in the memory (i.e., in other net­
works). This one-ta-many relationship is assumed to be reciprocal, i.e., each .. ~f 
the externally stored patterns has also connections projected to several of th€: 
stored patterns in the allocated network. 

The process leading to the formation of the external field E (acting upon the 
allocated network), generated by an input pattern n~arest to some stored mem­
ory pattern {IJ is assumed to be characterized as follows: 

1. There is a threshold degree of overlap &ntin, such that E > 0 only when 
the allocated network's state overiap H IJ is higher than Omin. 

2. At overlap values HIJ which are only moderately larger than Omin, hI-' is 
monotonically increasing, but as HI-' continues to rise, a certain 'optimal' 
point is reached, beyond which hIJ is monotonically decreasing. 

3. High-frequency words have lower Omin values than low-frequency words. 

Recognition tests are characterized by a high initial value of overlap HI-', to 
some memory {IJ. The value of h IJ and EJ.' generated is post-optimal and 
therefore smaller than in the case of low-frequency words which have higher 
Omin values. 

In Recall tests the initial situation is characterized by low values of overlap HI-' 
to some nearest memory {I-'. only the overlap value of high-frequency words is 
sufficient for activating associated it.ems, i.e. HJ.' > Omin. 
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Presentation Time: Increasing the presentation time of learned words is known 
to improve both their Recall and Recognition. 
This is explained by the phenomenon of maintenance rehearsal; The memories' 
basins of attraction get deeper, since the 'energy' E of a given state equals 
to 2.:;:1 H/J 2 • Deeper basins of attraction are also wider [HFP83, KPKP90]. 
Therefore, the probability of successful Recall and Recognition of rehearsed 
items is increased. The effect of a uniform rehearsal is equivalent to a tempera­
ture decrease. Hence, increasing presentation time will attenuate and delay the 
List length phenomenon, till a certain limit. In a similar way, the Test Delay 
phenomenon is accounted for [RY90]. 

Context Shift: The term Context Shift refers to the change in context from the 
tutorial period to the test period. Studies examining the effect of context shift 
have shown a decrement in Recall performance with context shift, but little 
change in Recognition performance. 
As demonstrated in [RY90], when a context shift is simulated by flipping some 
of the context string's bits, Recall performance severely deteriorates while mem­
ories stability remains intact. No significant increase in the time (i.e. number of 
asynchronous iterations) required for convergence was found , thus maintaining 
the pre-shift probability of successful Recognition. 

Age differences in Recall and Recognition: It was found that older people 
perform more poorly on Recall tasks than they do on Recognition tasks [eM87]. 
These findings can be accounted for by the assumption that synapses are be­
ing weakened and deleted with aging, which although being controversial has 
gained some experimental support (see [RY90]) . 'Ve have investigated the re­
trieval performance as a function of the input's initial overlap, various levels 
of synaptic dilution, and memory load: As demonstrated in Fig. 2, when 
the synaptic dilution is increased, a 'critical' phase is reached where memory 
retrieval of far-away input patterns is decreased but the retrieval of input pat­
terns with a high level of ihitial overlap remains intact. As the memory load 
is increased, this 'critical' phase begins at lower levels of synaptic dilution. On 
the other hand, only a mild increase (of 15%) in recognition speed was found. 

?;­
'i. 1 
u 
£J 

2 
n. 

'0 
u .. 
a: 

Figure£ Til ... I'I"I'AJ,ilily (If I'1I(rr;s"ful n:Lriev:ol ,~rfllrrllAtlre IlS II runcliotl or memory 
lu,ullltlclll'e illput ,,,,II'CIII'I; iuitialll\'Crlal' , lIt lwo clifTcJcuL cl ... grccs of "YIIAplic llilu. 

liun; ~O% ill lhe right·si,lc-J figllle, AI"I 5J';f, in lIlc Idl·sitlc<1 figure. Tlrc nclwork's 

parlllllc\crj; IIrC " = 500, l' = O.OS. 



An Attractor Neural Network Model of Recall and Recognition 647 

The interested reader can find a description of the modeling of additional phe­
nomena, including test position, word fragment completion, and distractor sim­
ilarity, in [RY90]. 

4 On a quantitative test of the model. 

4.1 Estimating Recall performance 

In a given network, with n neurons and m memories, the radius r of the basins 
of attraction of the memories decreases as the memory load parameter (a = min) 
is increased. According to [MPRV87], n, m, and r are related according to the 
expression m = (1-2.r)l. n 

4 logn' 

The concept of the basins of attraction implies a non-linear probability function 
with low probability when input vectors are further than the radius of attraction 
and high probability otherwise. The slope of this non-linearity increases as the noise 
level T is decreased. 

The probability Pc that a random input vector will converge to one of the stored 

memories can be estimated by Pc ~ l::~~ (~) . m. It is interesting to note that 
the rates of change of r and of Pc have distinct forms; Recall tests beginning from 
randomly generated cues would yield a very low rate of successful Recall (Pc). Yet, 
if one examines Recall by picking a stored memory, flipping some of its encoding 
bits, and presenting it as an input to the network (determining r), 'reasonable' 
levels of successful Recall can still be obtained even when a 'considerable' number 
of encoding bits are flipped. Pc can be also estimated by considering the context 
representation [RY90]. 

4.2 Estimating Recognition performance 

The probability of correct Recognition depends mainly on the the length of the 
interval ~; assume that after an input pattern is presented to a network of n neurons, 
during the time interval ~, k iterations steps of a Monte Carlo simulation are 
performed: In each such step, a neuron is randomly selected, and then it examines 
whether or not it should flip its state, according to its input. 

We show that the probability Pg { d} that an input pattern will be successfully 

recognized is is bounded by Pg {d} ~ 1 - d . e -nlc • It can be seen that Recognition's 
success depends strongly on the initial input proximity to a stored memory, and 
even more strongly dependent on the number of allowed asynchronous iteration k, 
determined by the length of~. For a selection of k = n(ln(d) + e), one obtains 
Pg ~ 1-e-c . The expected number of iterations, (denoted as Exp( X» till successful 

convergence is achieved is E(X) = l:t=l E(Xd = n . l:t=l + ~ n .In(d). 

In the more general case, Let 0 denote the Hamming distance (between the network's 
state S and a stored memory) below which retrieval is considered successful. Then, 
the corrected estimations of retrieval performance are Pg ~ 1 - (!) . e -~.o, and 
E(X) ~ n .In( ~). In simulations we have performed, (n = 500, d = 20, 0 = 10), the 
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average number of iterations until successful convergence was in the range of 300 -
400, in excellent correspondence with the predicted expectation, E(X) = 500·ln(2). 
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