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Abstract 

We demonstrate a multiscale adaptive network model of motion 
computation in primate area MT. The model consists of two stages: (l) 
local velocities are measured across multiple spatio-temporal channels, 
and (2) the optical flow field is computed by a network of direction­
selective neurons at multiple spatial resolutions. This model embeds 
the computational efficiency of Multigrid algorithms within a parallel 
network as well as adaptively computes the most reliable estimate of 
the flow field across different spatial scales. Our model neurons show 
the same nonclassical receptive field properties as Allman's type I MT 
neurons. Since local velocities are measured across multiple channels, 
various channels often provide conflicting measurements to the 
network. We have incorporated a veto scheme for conflict resolution. 
This mechanism provides a novel explanation for the spatial frequency 
dependency of the psychophysical phenomenon called Motion Capture. 

1 MOTIVATION 
We previously developed a two-stage model of motion computation in the visual system 
of primates (Le. magnocellular pathway from retina to V1 and MT; Wang, Mathur & 
Koch, 1989). This algorithm has these deficiencies: (1) the issue of optimal spatial scale 
for velocity measurement, and (2) the issue optimal spatial scale for the smoothness of 
motion field. To address these deficiencies, we have implemented a multi-scale motion 
network based on multigrid algorithms. 

All methods of estimating optical flow make a basic assumption about the scale of the 
velocity relative to the spatial neighborhood and to the temporal discretization step of 
delay. Thus, if the velocity of the pattern is much larger than the ratio of the spatial to 
temporal sampling step, an incorrect velocity value will be obtained (Battiti, Amaldi & 
Koch, 1991). Battiti et al. proposed a coarse-to-fine strategy for adaptively detennining 
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the optimal discretization grid by evaluating the local estimate of the relative error in the 
flow field due to discretization. The optimal spatial grid is the one minimizing this error. 
This strategy both leads to a superior estimate of the optical flow field as well as 
achieving the speedups associated with multigrid methods. This is important. given the 
large number of iterations needed for relaxation-based algorithms and the remarkable speed 
with which humans can reliably estimate velocity (on the order of 10 neuronal time 
constants). 

Our previous model was based on the standard regularization approach. which involves 
smoothing with weight A.. This parameter controls the smoothness of the computed 
motion field. The scale over which the velocity field is smooth depends on the size of the 
object The larger the object is. the larger the value of A. has to be. Since a real life vision 
system has to deal with objects of various sizes simultaneously. there does not exist an 
"optimal" smoothness parameter. Our network architecture allows us to circumvent this 
problem by having the same smoothing weight A. at different resolution grids. 

2 NETWORK ARCHITECTURE 
The overall architecture of the two-stage model is shown in Figure 1. In the rust stage. 
local velocities are measured at multiple spatial resolutions. At each spatial resolution p. 
the local velocities are represented by a set of direction-selective neurons. u(ij.k.p). 
whose preferred direction is in direction 8tc (the Component cells; Movshon. Adelson. 
Gizzi & Newsome. 1985). In the second stage. the optical flow field is computed by a 
network of direction-selective neurons (pattern cells) at multiple spatial resolutions. 
v(ij.k.p). In the following. we briefly summarize the network. 

We have used a multiresolution population coding: 
Nor Nru-l 1 , 1 

V = L L n (: vf 81 
1 p:<O p'." (1) 

where Nor is the number of directions in each grid. Nres is the number of resolutions in 
the network and I is a 2-D linear interpolation operator (Brandt, 1982). 

In our single resolution model. the input source. sO(ij.k). to a pattern cell v(ij.k) was: 

av(iJ.k) = so(ij.k) = L COS(81 - 8t') {u(ij.k~ - (u • V(iJ)} e(ij.k') 
at l' (2) 

where u is the the unit vector in the direction of local velocity and e(ij.k') is the local 
edge strength. For our multiscale network. we have used a convergent multi-channel 
source term. SO' to a pattern cell v(ij.k.p) is: 

p 
p ~ n p" p' 

So = ~ Rp"_l So 
p'Sp p"-p' (3) 

where R is a 2-D restriction operator. We use the full weighting operator instead of the 
injection operator because of the sparse nature of the input data. 

The computational efficiency of the multigrid algorithms chas been embedded in our 
multiresolution network by a set of spatial-fIltering synapses. SI' written as: 
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Figure 1. The network architecture. 

Figure 2. A coarse-to-fine veto scheme. 
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sf = a R~lVP-l - fjI;'lRC+ 1 vp 
• (4) 

where a and ~ are constants. 

As discussed in the section 1. the scale over which the velocity field is smooth depends 
on the size of the object Consider. for example. an object of certain size is moving with 
a given velocity across the field of view. The multiresolution representation and the 
spatial frequency filtering connections will force the velocity field to be represented 
mostly by a few neurons whose resolution grid matches the size of the object Therefore, 
the smoothness constraint should be enforced on the individual resolution grids. If 
membrane potential is used. the source for the smoothness term. S2' at resolution grid P. 

can be written as: 

Sf(ij,k) = A. L COS(aA; - at') (v(i-1j,k',p) + v(i+1j,k',p) + v(ij-1,k',p) + v(ij+l.k',p) - 4v(ij,k',p)} 
k' 

(5) 

where A. is the smoothness parameter. The smoothing weight A. in our formulation is the 
same for each grid and is independent of object sizes. 

The network equation becomes, 

aV(ij,k,p) = S& + sf + sf 
at . (6) 

The multiresolution network architecture has considerably more complicated synaptic 
connection pattern but only 33% more neurons as compared to the single resolution 
model, the convergence is improved by about two orders of magnitude (as measured by 
numbers of iterations needed). 

3 CONFLICT RESOLUTION 
The velocity estimated by our -- or any other motion algorithm -- depends on the spatial 
(Ax) and temporal (At) discretization step used. Battiti et ale derived the following 
expression for the relative error in velocity due to incorrect derivative estimation: 

6 = 14K.1 == 21r2 [(Lixl- (u~l] 
u 3~ m 

where u is the velocity, A. is the spatial frequency of the moving pattern. As velocity u 
deviates from Ax=uAt, the velocity measurement become less accurate. The scaling factor 
in (7) depends on the spatial filtering in the retina. Therefore. the choice of spatial 
discretization and spatial filtering bandwidth have to satisfy the requirements of both the 
sampling theorem and the velocity measurement accuracy. Even though (7) was derived 
based on the gradient model. we believe similar constraint applies to correlation models. 
We model the receptive field profiles of primate retinal ganglion cells by the Laplacian-of­
Gaussian (LOG) operators. If we require that the accuracy of velocity measurement be 
within 10% within u = 0 to u = 2 (Ax/At). then the standard deviation. a. of the Gaussian 
must be greater or equal to Ux. 

What happens if velocity measurement at various scales gives inconsistent results? 
Consider. for example. an object moving at a speed of 3 pixels/sec across the retina. As 
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shown in Figure 2, channels p=1 and p=2 will give the correct measurement, since it is in 
the reliable ranges of these channels, as depicted by fIlled circles. The finest channel, p=O, 
on the other hand will give an erroneous reading. This suggests a coarser-to-fine veto 
scheme for conflict resolution. We have incorporated this strategy in our network 
architecture by implementing a shunting term in Eq. (4). In this way, the erroneous input 
signals from the component cells at grid p=O are shunted out (the open circles in Figure 
2) by the component cells (the fIlled circles) at coarser grids. 

4 MOTION CAPTURE 
How does human visual system deal with the potential conflicts among various spatial 
channels? Is there any evidence for the use of such a coarse-to-fine conflict resolution 
scheme? We believe that the well-known psychophysical phenomenon of Motion Capture 
is the manifestation of this strategy. 

When human subjects are presented a sequence of randomly moving random dots pattern, 
we perceive random motion. Ramachandran and Anstis (1983) found, surprisingly, that 
our perception of it can be greatly influenced by the movement of a superimposed low 
contrast, low spatial frequency grating. They found that the human subject has a tendency 
to perceive the random dots as moving with the spatial grating, as if the random dots 
adhere to the grating. For a given spatial frequency of the grating, the percentage of 
capture is highest when the phase shift between frames of the grating is about 900. Even 
more surprisingly, the lower the spatial frequency of the grating, the higher the percentage 
of capture. 

Other researchers (e.g. Yuille & Grzywacz, 1988) and we have attempted to explain this 
phenomenon based on the smoothness constraint on the velocity field. However, 
smoothness alone can not explain the dependencies on spatial frequency and the phase 
shift of the gratings. The coarser-to-fine shunting scheme provides a natural explanation 
of these dependencies. 

We have simulated the spatial frequency and phase shift dependency. The results are 
shown in Figure 3. In these simUlations, we plotted the relative uniformity of the 
motion-captured velocity fields. Uniformity of 1 signifies total capture. As can be seen 
clearly, for a given spatial frequency, the effect of capture increases with phase shift, and 
for a given phase shift, the effect of capture also increase as the spatial frequency become 
lower. The lower spatial frequency gratings are more effective, because the coarser the 
channels are, the more finer component cells can be effectively shunted out, as is clear 
from the receptive field relationship shown in Figure 2. 

5 NONCLASSICAL RECEPTIVE FIELD 
Traditionally, physiologists use isolated bars and slits to map out the classical receptive 
fields (CRF) of a neuron which is the portion of visual field that can be directly 
stimulated. Recently, there is mounting evidence that in many visual neurons stimuli 
presented outside the CRF strongly and selectively influence neural responses to stimuli 
presented within the CRF. This is tenned nonclassical receptive field. 

Allman, Miezin & McGuinness (1985) have found that the true receptive field of more 
than 90% of neurons in the middle temporal (MT) area extends well beyond their CRF. 
The surrounds commonly have directional and velocity-selectivity influences that are 
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Figure 4. Simulation of Allman's type I non-classical receptive field properties. 
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antagonistic to the response from the CRF. Based on the surround selectivitYt the MT 
neurons can be classified into three types. Our model neurons show that same type of 
nonclassical receptive field selectivity as Allman's type I neuron. We have performed a 
series of simulations similar to Allman's original experiments. 

After the CRF of a model is determined, the optimal motion stimulus is presented within 
the CRF. The surrounds are, however, moved by the same amount but in the various 
directions. Dearly, the motion in the surround has profound effect of the activity of the 
cell we are monitoring. 1be effect of the surround motion on the cell as a function of the 
the direction of surround motion is plotted in Figure 4 (b). When the surround is moved 
in a similar direction as the center, the neuron activity of the cell is almost totally 
suppressed. On the other hand, when the surround is moved opposite to the center, the 
cell's activity is enhanced. Superimposed on Figure 4 are the similar plots from Allman's 
paper. 

6 CONCLUSION 
In conclusion, we have developed a multi-channel, multi-resolution network model of 
motion computation in primates. The model MT neurons show similar nonclassical 
surround properties as Allman's type I cells. We also proposed a novel explanation of the 
Motion Capture phenomenon based on a coarse-to-fine strategy for conflict resolution 
among the various input channels. 
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