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ABSTRACT 

Diagnosis of faults in complex, real-time control systems is a 
complicated task that has resisted solution by traditional methods. We 
have shown that neural networks can be successfully employed to 
diagnose faults in digitally controlled powertrain systems. This paper 
discusses the means we use to develop the appropriate databases for 
training and testing in order to select the optimum network architectures 
and to provide reasonable estimates of the classification accuracy of 
these networks on new samples of data. Recent work applying neural 
nets to adaptive control of an active suspension system is presented. 

1 INTRODUCTION 

This paper reports on work performed on the application of artificial neural systems 
(ANS) techniques to the diagnosis and control of vehicle systems. Specifically, we have 
examined the diagnosis of common faults in powertrain systems and investigated the 
problem of developing an adaptive controller for an active suspension system. 

In our diagnostic investigations we utilize neural networks routinely to establish the 
standards for diagnostic accuracy we can expect from analysis of vehicle data. Previously 
we have examined the use of various ANS paradigms to diagnosis of a wide range of 
faults in a carefully collected data set from a vehicle operated in a narrow range of speed 
and load. Subsequently, we have explored the classification of a data set with a more 
restricted set of faults, drawn from a much broader range of operating conditions. This 
step was taken as concern about needs for specific, real-time continuous diagnostics 
superseded the need to develop well-controlled, on-demand diagnostic testing. The 

537 



538 Marko 

impetus arises from recently enacted legislation which dictates that such real-time 
diagnosis of powertrain systems wi II be req uired on cars sold in the U.S. by the 
mid-1990's. The difference between the two applications is simple: in the former studies 
it was presumed that an independent agent has identified that a fault is present, the root 
cause needs only to be identified. In the real-time problem, the diagnostic task is to detect 
and identify the fault as soon as it occurs. Consequently, the real-time application is 
more demanding. In analyzing this more difficult task, we explore some of the 
complications that arise in developing successful classification schemes for the virtually 
semi-infinite data streams that are prcxJuced in continuous operation of a vehicle fleet. 
The obstacles to realized applications of neural nets in this area often stem from the 
sophistication required of the classifier and the complexity of the problems addressed. The 
limited computational resources on-board vehicles will determine the scope of the 
diagnostic task and how implementations, such as ANS methods, will operate. 

Finally, we briefly examine an extension of the ANS work to developing trainable 
controllers for non-linear dynamic systems such as active suspension systems. 
Preliminary work in this area indicates that effecti ve controllers for non-linear plants can 
be developed effiCiently, despite the exclusion of an accurate plant model from the training 
process. Although our studies were carried out in simulation, and accurate plant models 
were therefore available, the capability to develop controllers in the absence of such 
models is a significant step forward. Such controllers can be developed for existing, un­
modeled hardware, and thereby reduce both the efforts required to develop control 
algorithms by conventional means and the time to program the real-time controllers. 

2 NEURAL NET DIAG~OSTICS OF CONTROL SYSTEMS 
Our interest in neural networks for diagnosis of faults in control systems stemmed from 
work on model-based diagnosis of faults in such systems, typically called plants. In the 
model-based approach, a model of the system under control is developed and used to 
predict the dynamic behavior of the system. With the system in operation, the plant 
performance is observed. The expected behavior and the observed behavior are compared, 
and if no differences are found, the plant is deemed to be operating normally. If deviations 
are found, the differences indicate that a fault of some sort is present (failure detection), 
and an analysis of the differences is used in an attempt to identify the cause (fault 
identification). Successful implememations (~lin, 1987; Liubakka et al, 1988; Rizzoni 
et aI, 1989) of fault detection and identification in complex systems linearized about 
selected operating points were put together utilizing mathematical constructs called failure 
detection filters. These filters are simply matrices which transform a set of observations 
(which become an input vector to the filter) of a plant into another vector space (the 
output vector or classification space). The form of these filters suggested to us that 
neural networks could be used to learn similar transforms and thereby avoid the tedious 
process of model development and validation and a priori identification of the detection 
filter matrix elements. We showed previously that complex signal patterns from 
operating internal combustion engines could be examined on a cycle by cycle basis (two 
revolutions of the common four-stroke engine cycle) and used to correctly identify faults 
present in the engine (Marko el ai, 1989). 

Typical data collected from an operating engine has been shown elsewhere (Marko et ai, 
1989). This demonstration was focussed on a production engine, limited to a small 
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operating range. One might suppose that a linear model-based diagnostic system could 
be constructed for such a task, if one wished to expend the time and effort., and therefore 
this exercise was not a strenuous test of the neural network approach. Additionally. our 
expert diagnostician could examine the data traces and accurately identify the faults. 
However. we demonstrated that this problem, which had eluded automated solution by 
other means up to that time, could easily be handled by neural network classifiers and 
encouraged us to proceed to more difficult problems for which efficient. rigorous 
procedures did not exist. We were prepared to tolerate developing empirical solutions to 
our more difficult problems, since we did not expect that a thorough analytic 
understanding would precede a demonstrated solution. The process outlined here utilized 
neural network analysis almost exclusively (predominantly back-propagation) on these 
problems. The understanding of the relationship of neural networks, the structure of the 
data and the training and testing of the classifiers emerged after acceptable solutions using 
the neural networks methods were obtained. 

Consequently, the next problem addressed was that of identifying similar faults by 
observing the system through the multiplex serial communication link resident on the 
engine control computer. The serial link provides a simple hook-up procedure to the 
vehicle without severing any links between plant and microcontroller. However, the chief 
drawback of this approach is that it greatly complicates the recognition task. The 
complication arises because the data from the plant is sampled too infrequently, is 
"contaminated" by some processing in the controller. and delivered asynchronously to the 
serial link with respect to events in the plant (the data output process is not permitted to 
interrupt the real-time control requirements). In this case, a test sample of a smaller 
number of faults was drawn from a vehicle operated in a similar limited range to the fIrst 
example and an attempt to detect and identify the faults was made using a variety of 
networks. Unlike the previous case. it was impossible for any experienced technicians to 
identify the faults. Again, neural network classifIers were found to develop satisfactory 
solutions over these limited data sets, which were later verified by a number of careful 
statistical tests (Marko el aI, 1990). This more complex problem also produced a wider 
range of performance among the various neural ne.t paradigms studied, as shown in Figure 
I. where the error rates for various classifiers on these data sets are shown in the graph. 
These results suggested that not only would data quality and quantity need to be controlled 
and improved. but that the problem itself would implicitly direct us to the choice of the 
classifier paradigm. These issues are more thoroughly discussed elsewhere (Marko et al, 
1990; Weiss et al. 1990). but the conclusion was that a complete, acceptable solution to 
the real scope of this problem could not be developed with our group's resources for data 
collection, data verification and classifier validation. 

With these two experiences in mind, we could see that the fIrst approach was an effective 
means of handling the failure detection and identification (FDI) problem, while the latter, 
although attractive from the standpoint of easy link-up to a vehicle, was for our 
numerical analysis, a very difficult task. It seemed that the appropriate course was to 
obtain reliable data, by observing the plant directly, and to perfonn the classification on 
that data. An effective scheme to accomplish this goal is to perfonn the classifIcation task 
in the control microprocessor which has access to the dire{:t data. Adopting this strategy, 
we move the diagnostics from an off-board processor to the on-board processor, and 
create a new set of possibilities for diagnostics. 
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With diagnostics contained in the controlling processor, diagnostics can be shifted from 
an on-demand activity. undertaken at predetermined intervals or when the vehicle operator 
has detected a problem, to a continuous, real-time activity. This change implies that me 
diagnostic algorithms will, for the most part, be evaluating a properly operating system 
and only infrequently be required to detect a failure and identify the cause. Additionally, 
the diagnostic algorithms will have to be very compact, since the current control 
microprocessors have very limited time and memory for calculation compared to a 
off-board PC. Furthermore, the classification task will need to be learned from a sample 
of data which is minuscule compared to the data sets that the deployed diagnostics will 
have to classify. This fact imposes on the training data set the requirement that it be an 
accurate statistical sample of the much more voluminous real-world data. This situation 
must prevail because we cannot anticipate the deployment of a classifier mal is 
undergoing continuous training. A classifier capable of continuous adaptation would 
require more computational capability, and quite likely a supervised learning environment. 
The fact is, even for relatively simple diagnostics of operating engines, assembling a 
large, accurate training data set off-line is a considerable task. This last issue is explored 
in the next paragraph, but it seems to rule out early deployment of anything other than 
pretrained classifiers until some experience with much larger data sets from deployed 
diagnostic systems is obtained. 
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Figure I. Comparison of the performance of various neural network paradigms on two 
static data sets by leave~ne~ut testing from measurements performed on vehicles in a 
service bay. The network paradigms tested arc nearest neighbor, Restricted Coulomb 
Energy CRCE) Single Unit, RCE Multiple Units, Backpropagation, Tree Classifier using 
hyperplane separation, Tree Classifier using Center-Radius decision surface. The 6O-Pin 
data is the data obtained directly from the engine, the DCL (Data Communication Link) 
data comes through the control microprocessor on a multiplexed two-wire link. Note that 
RCE-Multiple requires a priori knowledge about the problem which was unavailable for 
the DCL data and thal the complete statistical testing of backpropagation was impractical 
due to the length of time required to train each network. 
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We have examined this issue of real-time diagnostics as it applies to engine misfire 
detection and identification. Data from nonnal and misfiring engines was required from a 
wide range of conditions, a task which consumes hours of test track driving. The set of 
measurements taken is extensive in order to be cenain that the infonnation obtained is a 
superset of the minimum set of informaLion required. Additionally, great care needed to be 
exercised in eSLablishing the accuracy of a training set for supervised learning. 
Specifically, we needed to be certain that the only samples of misfires included were those 
intentionally created, and not those which occurred spontaneously and were presumably 
mislabeled as normal because no intentional fault was being introduced at that time. In 
order to accomplish this purification of the training set, one must either have an 
independent detector of misfires (none exists for a production engine operating in a 
vehicle) or go through an iterative process to remove all the data vectors misclassified as 
misfire from the data set after the network has completed training. Since the independent 
assessment of misfire cannot be obtained, we must accept the latter method which is not 
altogether satisfactory. The problem with the iterative method is that one must initially 
exclude from the training set exactly the type of event that the system is being trained to 
classify. We have to stan with the assumption that any additional misfires, beyond the 
number we introduce, are classification errors. We then reserve the right to amend this 
judgment in light of further experience as we build up confidence in the classifier. The 
results of our initial studies is shown in Fig. 2. Here we can see that a backpropagation 
neural network can classify a broad range of engine operation correctly, and thal the 
network does quite well when we broaden the operating range almost to the perfonnance 
limits of the engine. The classification errors indicated in the more exhaustive study are 
misfires detected when no misfire was introduced. At this stage of our investigation we 
cannot be certain that these are real errors, they may very well be misfires occurring 
spontaneously or appearing as a result of an additional, unintentional induced misfrre in 
an engine cycle following the one in which the fault was introduced. 

The results shown in Fig. 2 therefore represent a conservative estimate of the 
classification errors thaL can be expected from tests of our engine data. The 
backpropagation network we constructed demonstrated that misfire detection and 
identification is attainable if adequate computation resources are available and appropriate 
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Figure 2. Classification accuracy of a backpropagation neural network trained on 
misfire data tabulated as confusion matrices. Data similar to that shown in Fig. 2 is 
collected over a modest range of dynamic conditions and then over a very wide range of 
conditions (potholed roads, severe accelerations and braking etc.) to estimate the 
performance limits of classifiers on such data. These misclassification rates are indicators 
of the best possible perfonnance obtainable from such data, and therefore they are not 
reasonable estimates of what practical implementations of classifiers should produce. 
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care in obtaining a suitable training set is exercised. However. in order to make a neural 
net a practical means of performing this diagnosis aboard vehicles, we need to eHminate 
information from the input vector which has no effect on the classification accuracy; 
otherwise the computational task is hopelessly beyond the capability of the engine's 
microcontroller. This work is currently underway using a combination of a priori 
knowledge about the sensor information and principal component analysis of the data 
sets. Nonetheless, the neural network analysis has once again established that a solution 
exists and set standards for classification accuracy that we can hope. to emulate with more 
compact forms of classifiers. 

3 NEURAL NET CONTROL OF ACTIVE SUSPENSION 

The empirical approach to developing solutions for diagnostic problems suggested that a 
similar tactic might be employed effectively to control problems for which developing 
acceptable controllers for non-linear dynamic systems by conventional means was a 
daunting task. We wished to explore the application of feed-forward networks to the 
problem of learning to control a model of a non-linear active suspension system. This 
problem was of interest because considerable effort had gone into designing controllers by 
conventional means and a performance comparison could readily be made. In addition t 

since active suspension systems are being investigated by a number of companies, we 
wished to examine the possibility of developing model-independent controllers for such 
systems, since effective hardware systems are usually available before thoroughly 
validated system models appear. The initial results of this investigation, outlined below, 
are quite encouraging. 

A backpropagation network was trained to emulate an existing controller for an active 
suspension as a first exercise to establish some feel for the complexity of the network 
required to perform such a task. A complete description of the work can be found 
elsewhere (Hampo, 1990), but briefly, a network with seve.ral hidden nodes was trained to 
provide perfonnance equivalent to the conventional controller. Since this exercise simply 
replicated an existing controller, the next step was to develop a controller in the absence 
of any conventional controller. Therefore, a system model with a novel non-linearity was 
developed and utilized to train a neural network to control such a plant. The architecture 
for this control system is similar to that used by Nygen and Widrow (Ngyen et al t 1990) 
and is described in detail elsewhere.(Hampo et ai, 1991) Once again, a backpropagation 
network, with only 2 hidden nodes, was trained to provide an satisfactory performance in 
controlling the suspension system simulation running on a workstation. This small 
network learned the task with less than WOO training vectors, the equivalent of less than 
1 ()() feet of bumpy road. 

Finally, we examined the performance of the neural network on the same plant, but 
without explicit use of the plant model in the control architecture. In this scheme, the 
output error is derived from the difference between the. observed performance and the 
desired performance produced by a cost function based upon conventional measures of 
suspension performance. In this Cost Function architecture, networks of similar size 
were readily trained to control non-linear plants and attain performance equivalent to 
conventional controllers hand-tuned for such plants. Controllers developed in this 
manner provide a flexible means of approaching the problem of investigating tradeoffs 
between the conflicting demands made on such suspension systems. These demands 
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include ride quality, vehicle control, and energy management. This control architecture is 
being applied both to simulations of new systems and to actual, un-modeled hardware rigs 
to expedite prototype development. 

4 CONCLUSIONS 

This brief summary of our investigations has shown that neural networks play an 
important role in the development both of classification systems for diagnosis of faults in 
control systems and of controllers for practical non-linear plants. In these tasks, neural 
networks must compete with conventional methods. Conventional methods, although 
endowed with a more thorough analytic understanding, have usually failed to provide 
acceptable solutions to the problems we encountered as readily as have the neural network 
methods. Therefore, the ANS methods have a crucial role in developing solutions. 
Although neural networks provide these solutions expeditiously, we are just beginning to 
understand how these solutions arise. The growth of this understanding will detennine 
the role neural networks play in the deployed implementations of these solutions. 

References 

1. P.S. Min, "Detection of Incipient Failures in Dynamic Systems", Ph.D. Thesis, 
University of Michigan, 1987. 

2. M.K. Liubakka, G. Rizzoni, W.B. Ribbens and K.A. Marko, "Failure Detection 
Algorithms Applied to Control System Design for Improved Diagnostics and 
Reliability", SAE Paper #880726, Detroit, Michigan, 1988. 

3. G. Rizzoni, R. Hampo, M.K. Liubakka and K.A. Marko, "Real-Time Detection 
Filters for On-Board Diagnosis of Incipient Failures", SAE Paper #890763, 1989. 

4. K.A. Marko, J. James, J. Dosdall and J. Murphy, "Automotive Control System 
Diagnostics Using Neural ~ets for Rapid Classification of Large Data Sets", Proceedings 
DCNN, 11-13, Washington, D.C., 1989. 

5. K.A. Marko, L.A. Feldkamp and G.V. Puskorius, "Automotive Diagnostics Using 
Trainable Classifiers: Statistical Testing and Paradigm Selection", Proceedings IJC!\"N, 
1-33, San Diego, California, 1990. 

6. Sholom Weiss and Casimir Kulikowski, "Computer Systems That Learn", Morgan 
Kaufman, San Mateo, California, 1990. 

7. RJ. Hampo, "Neural ~et Control of an Active Suspension System", ~1.S. Thesis, 
University of Michigan, 1990. 

8. D. Ngyen and B. Widrow, "The Truck-Backer Upper: An Example of Self-Learning in 
~eural Networks", in Neural Networks for Control, ed. W.T. Miller, MIT Press, 
Cambridge, Massachusetts, 1990. 

9. RJ. Hampo and K.A. Marko, "Neural Net Architectures for Active Suspension 
Control", paper submitted to UCNN, Seattle, Washington, 1991. 


